Electrically enhanced biofilm removal in a contaminated model dental unit waterline.

J West Soc Periodontol Periodontal Abstr

Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143-0762, USA.

Published: July 2011

Download full-text PDF

Source

Publication Analysis

Top Keywords

electrically enhanced
4
enhanced biofilm
4
biofilm removal
4
removal contaminated
4
contaminated model
4
model dental
4
dental unit
4
unit waterline
4
electrically
1
biofilm
1

Similar Publications

Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.

View Article and Find Full Text PDF

Fañanas cells (FCs) are cerebellar glia of unknown function. First described more than a century ago, they have been almost absent from the scientific literature ever since. Here, we combined whole-cell, patch clamp recordings, near-UV laser photolysis, dye-loading and confocal imaging for a first characterization of FCs in terms of their morphology, electrophysiology and glutamate-evoked currents.

View Article and Find Full Text PDF

Electrocatalytic reduction of CO (eCORR) into valuable multi-carbon (C) products is an effective strategy for combating climate change and mitigating energy crises. The high-energy density and diverse applications of C products have attracted considerable interest. However, the complexity of the reaction pathways and the high energy barriers to C-C coupling lead to lower selectivity and faradaic efficiency for C products than for C products.

View Article and Find Full Text PDF

Carbon quantum dot-anchored polyaniline on electrospun carbon nanofibers as freestanding electrodes for symmetric solid-state supercapacitors.

Dalton Trans

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, People's Republic of China.

A binder-free and freestanding electrode was designed by uniformly immobilizing carbon quantum dot (CQD)-anchored polyaniline (PANI) heterostructures onto electrospun carbon nanofibers (CNFs) a facile hierarchical assembly process. The fabricated freestanding CNF/PANI/CQD electrode exhibits a unique three-dimensional (3D) network nanostructure, which accelerates ion migration between the interior and surface of the electrode, thereby enhancing its charging and discharging performance. Moreover, the functional groups on the surface of CQDs could anchor PANI through possible chemical bonding, which not only improves the stability of the PANI/CQD heterojunction but also creates an additional conductive channel for the PANI polymer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!