Addition of the amine-boranes H(3)B⋅NH(2)tBu, H(3)B⋅NHMe(2) and H(3)B⋅NH(3) to the cationic ruthenium fragment [Ru(xantphos)(PPh(3))(OH(2))H][BAr(F)(4)] (2; xantphos=4,5-bis(diphenylphosphino)-9,9-dimethylxanthene; BAr(F)(4)=[B{3,5-(CF(3))(2)C(6)H(3)}(4)](-)) affords the η(1)-B-H bound amine-borane complexes [Ru(xantphos)(PPh(3))(H(3)B⋅NH(2)tBu)H][BAr(F)(4)] (5), [Ru(xantphos)(PPh(3))(H(3) B⋅NHMe(2))H][BAr(F)(4)] (6) and [Ru(xantphos)(PPh(3))(H(3)B⋅NH(3))H][BAr(F)(4)] (7). The X-ray crystal structures of 5 and 7 have been determined with [BAr(F)(4)] and [BPh(4)] anions, respectively. Treatment of 2 with H(3)B⋅PHPh(2) resulted in quite different behaviour, with cleavage of the B-P interaction taking place to generate the structurally characterised bis-secondary phosphine complex [Ru(xantphos)(PHPh(2))(2)H][BPh(4)] (9). The xantphos complexes 2, 5 and 9 proved to be poor precursors for the catalytic dehydrogenation of H(3)B⋅NHMe(2). While the dppf species (dppf=1,1'-bis(diphenylphosphino)ferrocene) [Ru(dppf)(PPh(3))HCl] (3) and [Ru(dppf)(η(6)-C(6)H(5)PPh(2))H][BAr(F)(4)] (4) showed better, but still moderate activity, the agostic-stabilised N-heterocyclic carbene derivative [Ru(dppf)(ICy)HCl] (12; ICy=1,3-dicyclohexylimidazol-2-ylidene) proved to be the most efficient catalyst with a turnover number of 76 h(-1) at room temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201100101 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Switchable selectivity achieved by altering reaction conditions within the same photocatalytic system offers great advantages for sustainable chemical transformations and renewable energy conversion. In this study, we investigate an efficient photocatalytic methanol dehydrogenation with controlled selectivity by varying the concentration of nickel cocatalyst, using zinc indium sulfide nanocrystals as a semiconductor photocatalyst, which enables the production of either formaldehyde or ethylene glycol with high selectivity. Control experiments revealed that formaldehyde is initially generated and can either serve as a terminal product or intermediate in producing ethylene glycol, depending on the nickel concentration in the solution.
View Article and Find Full Text PDFNat Commun
January 2025
Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
The advancement of an effective hydrogen liberation technology from liquid organic hydrogen carriers, particularly cycloalkanes such as cyclohexane and methylcyclohexane, holds significance in realizing a hydrogen-centric society. However, the attainment of homogeneous catalytic acceptorless dehydrogenation characterized by elevated selectivity for thorough aromatization under mild conditions remains unrealized. In this study, a catalyst system, facilitated by a double hydrogen atom transfer processes, has been devised for the catalytic acceptorless dehydrogenation of inert cycloalkanes at ambient temperature under visible light irradiation.
View Article and Find Full Text PDFOrg Lett
January 2025
China Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, and Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
Herein, a one-pot domino catalyzed three-component process is described, which is initiated by a palladium/zinc cooperatively catalyzed cycloaddition between trimethylenemethane (TMM) and unactivated alkyl/aryl imines, followed by one-pot isomerization and Zn(OTf)-catalyzed DDQ oxidation, furnishing valuable substituted pyrroles. We disclose that the palladium/zinc cooperative catalysis affords a dual-Zn(OTf)-stabilized azapalladacycle, wherein the Pd-N bond is polarized by Zn(OTf), facilitating a unique outer-sphere allylic amination. Moreover, subsequent DDQ dehydrogenation can be feasibly promoted by zinc catalysis.
View Article and Find Full Text PDFChemistry
January 2025
Shihezi University, School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, North 4th Road, 832003, Shihezi, CHINA.
An N,N,N-type Cu(Ⅱ) complex-catalyzed desaturation method for converting alcohols, ketones, lactones, and lactams to their α,β-unsaturated carbonyl compounds is reported. The dehydrogenation reaction can be conducted with a green terminal oxidant O2 without requiring strong acid/base or stoichiometric oxidants. The Cu(Ⅱ) complex/TEMPO/O2 system uses a non-noble catalyst, and a green terminal oxidant as well as demonstrates high activity and functional group tolerance.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Mathematics and Physics Engineering, Faculty of Engineering, Mansoura University, El-Mansoura 35516, Egypt.
Bimetallic NiCr nanoparticles decorated on carbon nanofibers (NiCr@CNFs) were synthesized through electrospinning and investigated as catalysts for hydrogen generation from the dehydrogenation of sodium borohydride (SBH). Four distinct compositions were prepared, with chromium content in the catalysts ranging from 5 to 25 weight percentage (wt%). Comprehensive characterization confirmed the successful formation of bimetallic NiCr@CNFs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!