In China, coal combustion is the most important source of atmospheric sulfur pollution. Moss sulfur isotopic signatures have been believed to hold source-specific information that can serve as a fingerprint to identify atmospheric sulfur sources. In cities where only local coals were combusted, we observed a good correspondence of average sulfur isotope ratios in urban mosses (Haplocladium microphyllum) to the values of local coals (δ(coals) = 1.455δ(mosses)- 3.945, R(2) = 0.975, p = 0.01). But if different types of coals were combusted, we did not know whether moss sulfur isotope ratios can indicate mixed coals. To confirm this, using a mixing model we estimated the ratios of imported coal to local coals at cities where both coals were used. We found that the estimated ratios at large cities (>1 million people) where both coals were used were similar to the reported ratios in their respective provinces. For small cities (<0.5 million people) in Jiangxi Province and other provinces, the estimated ratios were higher than the reported ratios because the relatively cheaper local coals were less used in all the small cities except in cities where local coal deposits were found nearby. The comparison results showed that moss sulfur isotope is a useful tool for indicating coal-derived sulfur even in cities where mixed coals were combusted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1em10073d | DOI Listing |
Nat Commun
January 2025
Atomic and Mass Spectrometry-A&MS research unit, Department of Chemistry, Ghent University, Ghent, Belgium.
The Chicxulub asteroid impact event at the Cretaceous-Paleogene (K-Pg) boundary ~66 Myr ago is widely considered responsible for the mass extinction event leading to the demise of the non-avian dinosaurs. Short-term cooling due to massive release of climate-active agents is hypothesized to have been crucial, with S-bearing gases originating from the target rock vaporization considered an important driving force. Yet, the magnitude of the S release remains poorly constrained.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea.
Mercury (Hg) is a contaminant that poses health risks for human populations relying on seafood consumption. To mitigate its impact, identifying and monitoring Hg sources have become priorities, notably under the Minamata Convention. Bivalves are commonly used as sentinels in contaminant biomonitoring but can accumulate Hg from diverse environmental media.
View Article and Find Full Text PDFSci Total Environ
January 2025
China National Environmental Monitoring Centre, Beijing 100012, China.
The riverine dissolved organic matter (DOM) pool constitutes the largest and most dynamic organic carbon reservoir within inland aquatic systems. Human activities significantly alter the distribution of organic matter (OM) in rivers, thereby affecting the availability of DOM. However, the impact of total suspended solids (TSS) on DOM under anthropogenic influence remains insufficiently elucidated.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Archaeology & Palaeoecology, School of Natural and Built Environment, Queen's University, Belfast BT9 3AZ, United Kingdom.
Polar ice cores and historical records evidence a large-magnitude volcanic eruption in 1831 CE. This event was estimated to have injected ~13 Tg of sulfur (S) into the stratosphere which produced various atmospheric optical phenomena and led to Northern Hemisphere climate cooling of ~1 °C. The source of this volcanic event remains enigmatic, though one hypothesis has linked it to a modest phreatomagmatic eruption of Ferdinandea in the Strait of Sicily, which may have emitted additional S through magma-crust interactions with evaporite rocks.
View Article and Find Full Text PDFWater Res
December 2024
Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, PR China. Electronic address:
Steep redox gradients and diverse microbial communities in the anaerobic hyporheic zone create complex pathways for the degradation of herbicides, often linked to various terminal electron-accepting processes (TEAPs). Identifying the degradation pathways and their controlling factors under various TEAPs is of great significance for understanding mechanisms of water purification in the hyporheic zone. However, current research on herbicides in this area remains insufficient.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!