The prevalence of coronary anomalies in the transposition of the great arteries is high. Transfer of the coronary arteries during arterial switch operation is the principle step and incomplete transport of the coronary arteries to the neoaortic root results into iatrogenic coronary problems. We present a case with the residual left anterior descending coronary artery originating from the pulmonary artery as a complication of the failure of transfer during the arterial switch operation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104536PMC
http://dx.doi.org/10.4103/0974-2069.79626DOI Listing

Publication Analysis

Top Keywords

arterial switch
12
switch operation
12
left anterior
8
anterior descending
8
descending coronary
8
coronary artery
8
pulmonary artery
8
artery complication
8
coronary arteries
8
coronary
6

Similar Publications

Background: Vascular calcification (VC) is a dynamic, tightly regulated process driven by cellular activity and resembling the mechanisms of bone formation, with specific molecules playing pivotal roles in its progression. We aimed to investigate the involvement of the bone morphogenic proteins (, , , and ) system in this process. Our study used an advanced in vitro model that simulates the biological environment of the vascular wall, assessing the ability of a phosphate mixture to induce the osteoblastic switch in human coronary artery smooth muscle cells (HCASMCs).

View Article and Find Full Text PDF

[Switch after Switch. Ventricular retraining as alternative to heart transplant].

Andes Pediatr

October 2024

Departamento de Cardiopatías Congénitas y Pediátricas, Fundación Cardiovascular de Colombia, Santander, Colombia.

Unlabelled: Transposition of the great arteries (Dextro-TGA), repaired with physiological correction techniques (atrial switch - Mustard or Senning surgery), can present as a complication the failure of the right ventricle that acts as systemic and, at the same time, deconditioning of the left ventricle, leading to congestive heart failure. In these patients, treatment and recovery options are very limited.

Objective: To describe successful late anatomical correction after ventricular retraining.

View Article and Find Full Text PDF

Background: Patients with systemic right ventricle (SRV), either d-transposition of the great arteries following an atrial switch procedure or congenitally corrected transposition of the great arteries, develop severe right ventricular dysfunction, prompting appropriate medical therapy. However, the efficacy of beta-blockers and angiotensin receptor blockers or angiotensin-converting enzyme inhibitors (ACEI) in SRV patients is unproven.

Objectives: The objective of this study was to determine the effects of ACEI/ARB and beta-blockers on outcomes in SRV patients after accounting for likely cofounders affecting their use.

View Article and Find Full Text PDF

Background: Magnolia kobus DC (MO), as a plant medicine, has been reported to have various physiological activities, including neuroprotective, anti-inflammatory, and anti-diabetic effects. However, vascular protective effects of MO remain incompletely understood. In this study, we evaluated the vascular protective effect of MO against ferroptosis in a carotid artery ligation (CAL)-induced neointimal hyperplasia mouse model and in aortic thoracic smooth muscle A7r5 cells.

View Article and Find Full Text PDF
Article Synopsis
  • Postinterventional restenosis poses challenges in treating peripheral vascular disease, as current drugs hinder endothelial repair while preventing neointima hyperplasia.
  • Stem cell-derived exosomes offer therapeutic benefits by delivering functional microRNAs but face limitations in targeting and tissue uptake in injured vessels.
  • To improve efficacy, researchers created platelet-mimetic exosomes (PM-EXOs) that enhance targeting to vascular injuries and promote endothelial repair with minimal side effects, demonstrating significant potential in reducing neointima formation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!