Approximately one-third of epilepsy patients are pharmacoresistant. Overexpression of P-glycoprotein and other multidrug transporters at the blood-brain barrier is thought to play an important role in drug-refractory epilepsy. Thus, quantification of regionally different P-glycoprotein activity in the brain in vivo is essential to identify P-glycoprotein overactivity as the relevant mechanism for drug resistance in an individual patient. Using the radiolabeled P-glycoprotein substrate (R)-[(11)C]verapamil and different doses of coadministered tariquidar, which is an inhibitor of P-glycoprotein, we evaluated whether small-animal positron emission tomography can quantify regional changes in transporter function in the rat brain at baseline and 48 h after a pilocarpine-induced status epilepticus. P-glycoprotein expression was additionally quantified by immunohistochemistry. To reveal putative seizure-induced changes in blood-brain barrier integrity, we performed gadolinium-enhanced magnetic resonance scans on a 7.0 tesla small-animal scanner. Before P-glycoprotein modulation, brain uptake of (R)-[(11)C]verapamil was low in all regions investigated in control and post-status epilepticus rats. After administration of 3 mg/kg tariquidar, which inhibits P-glycoprotein only partially, we observed increased regional differentiation in brain activity uptake in post-status epilepticus versus control rats, which diminished after maximal P-glycoprotein inhibition. Regional increases in the efflux rate constant k(2), but not in distribution volume V(T) or influx rate constant K(1), correlated significantly with increases in P-glycoprotein expression measured by immunohistochemistry. This imaging protocol proves to be suitable to detect seizure-induced regional changes in P-glycoprotein activity and is readily applicable to humans, with the aim to detect relevant mechanisms of pharmacoresistance in epilepsy in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693085 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.6616-10.2011 | DOI Listing |
Front Nutr
January 2025
College of Animal Science, Anhui Science and Technology University, Chuzhou, China.
Introduction: Enterotoxic (ETEC) is the main pathogen that causes diarrhea, especially in young children. This disease can lead to substantial morbidity and mortality and is a major global health concern. Managing ETEC infections is challenging owing to the increasing prevalence of antibiotic resistance.
View Article and Find Full Text PDFTechnol Cancer Res Treat
January 2025
Cell Therapy Center, The University of Jordan, Amman, Jordan.
Background: Doxorubicin (DOX) is a potent chemotherapeutic agent for breast cancer, but its effectiveness is often diminished by resistance mechanisms, particularly through p-glycoprotein (P-gp) mediated drug efflux. Clarithromycin (CAM), a macrolide antibiotic, inhibits multiple metabolic pathways including CYP3A and P-gp, potentially countering DOX resistance.
Objective: This study aimed to evaluate the potentiation of DOX and its effectiveness against the MCF-7 breast cancer cell line by encapsulating both DOX and CAM in PEGylated liposomes.
Eur J Pharm Sci
January 2025
Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium. Electronic address:
The purpose of this study was to evaluate EpiColon, a novel human organotypic 3D colon microtissue prototype, developed to assess colonic drug disposition, with a particular focus on permeability ranking, and compare its performance to Caco-2 monolayers. EpiColon was characterized for barrier function using transepithelial electrical resistance (TEER), morphology via histology and immunohistochemistry, and functionality through drug transport studies measuring apparent permeability (P). Cutoff thresholds for the permeability of FITC-dextran 4 kDa (FD4), FITC-dextran 10 kDa (FD10S), and [C]mannitol were established to monitor microtissue integrity.
View Article and Find Full Text PDFComput Biol Chem
January 2025
Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; Elicure, 12, Gyeongyeol-ro 17 beon-gil, Seo-gu, Gwangju, Republic of Korea. Electronic address:
This study aimed to profile metabolites from five Trichoderma strains and assess their cytotoxic and pharmacological activities, particularly targeting oral squamous cell carcinoma (OSCC). UHPLC-TOF-MS analysis revealed the presence of 25 compounds, including heptelidic acid, viridiol isomers, and sorbicillinol from the different Trichoderma extracts. Pharmacokinetic analysis showed moderate permeability and low interaction with P-glycoprotein, suggesting good drug absorption with minimal interference in cellular uptake.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:
Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!