Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle.

Integr Comp Biol

Department of Ecology and Organismal Biology, Indiana State University, Terre Haute, Indiana 47809.

Published: December 2004

The majority of ectotherms grow slower but mature at a larger body size in colder environments. This phenomenon has puzzled biologists because classic theories of life-history evolution predict smaller sizes at maturity in environments that retard growth. During the last decade, intensive theoretical and empirical research has generated some plausible explanations based on nonadaptive or adaptive plasticity. Nonadaptive plasticity of body size is hypothesized to result from thermal constraints on cellular growth that cause smaller cells at higher temperatures, but the generality of this theory is poorly supported. Adaptive plasticity is hypothesized to result from greater benefits or lesser costs of delayed maturation in colder environments. These theories seem to apply well to some species but not others. Thus, no single theory has been able to explain the generality of temperature-size relationships in ectotherms. We recommend a multivariate theory that focuses on the coevolution of thermal reaction norms for growth rate and size at maturity. Such a theory should incorporate functional constraints on thermal reaction norms, as well as the natural covariation between temperature and other environmental variables.

Download full-text PDF

Source
http://dx.doi.org/10.1093/icb/44.6.498DOI Listing

Publication Analysis

Top Keywords

body size
12
growth rate
8
colder environments
8
adaptive plasticity
8
hypothesized result
8
thermal reaction
8
reaction norms
8
temperature growth
4
rate body
4
size
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!