A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The impact of hyperglycemia and the presence of encapsulated islets on oxygenation within a bioartificial pancreas in the presence of mesenchymal stem cells in a diabetic Wistar rat model. | LitMetric

This study investigates the potential of bone marrow (BM-MSCs) versus adipose mesenchymal stem cells (AMSCs) to potentiate the oxygenation of encapsulated islets in a subcutaneous bioartificial pancreas. Oxygen pressures (inside subcutaneous implants) were followed in vivo (by electronic paramagnetic resonance) in non-diabetic/diabetic rats transplanted with encapsulated porcine islets or empty implants up to 4 weeks post-transplantation. After graft explantation, neoangiogenesis surrounding the implants was assessed by histomorphometry. Angiogenic properties of BM-MSCs and AMSCs were first assessed in vitro by incubation of the cells in hypoxia chambers, under normoxic/hypoxic and hypo-/hyperglycemic conditions, followed by quantification of vascular endothelial growth factor (VEGF) release. Second, the in vivo aspect was studied by subcutaneous transplantation of encapsulated BM-MSCs and AMSCs in diabetic rats and assessment of the cells' angiogenic properties as described above. Diabetic state and islet encapsulation induced a significant decrease of oxygenation of the subcutaneous implant and an increased number of cells expressing VEGF. AMSCs demonstrated a significantly higher VEGF secretion than BM-MSCs in vitro. In vivo, AMSCs improved the implant's oxygenation and vascularization. Diabetes and islet encapsulation significantly reduced the oxygenation of a subcutaneous bioartificial pancreas. AMSCs can improve oxygenation by VEGF release in hypoxia and hyperglycemia states.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2011.02.061DOI Listing

Publication Analysis

Top Keywords

bioartificial pancreas
12
encapsulated islets
8
mesenchymal stem
8
stem cells
8
subcutaneous bioartificial
8
angiogenic properties
8
bm-mscs amscs
8
vegf release
8
islet encapsulation
8
oxygenation subcutaneous
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!