New variants of Vibrio cholerae O1 have appeared in different time-frames in various endemic regions, especially in Asia and Africa. Sixty-nine strains of V. cholerae O1 isolated in Zambia between 1996 and 2004 were investigated by various genotypic techniques to determine the lineage of virulence signatures and clonality. All strains were positive for Vibrio seventh pandemic Islands (VSP)-I and VSP-II and repeat toxin (RTX) gene clusters attesting their El Tor lineage. Interestingly, strains isolated in recent times (2003-2004) were identified as an altered variant (El Tor biotype that harbours El Tor type rstR but produce classical ctxB) that replaced completely the progenitor El Tor strains prevalent in 1996-1997. Recent altered variant strains differed from prototype El Tor strains isolated earlier in that these strains lacked two ORFs, VC0493 and VC0498, in the VSP-II region. PFGE analysis revealed two major clonal lineages in the strains; cluster A represented the strains isolated before 2003 and cluster B the altered strains isolated in 2003-2004. Cluster A was closely related to prototype El Tor reference strain isolated in Bangladesh in 1971. Cluster B was found to be matched with Bangladeshi altered strains but was different from the hybrid strains isolated from Mozambique and Bangladesh. This report provides important information on the genesis of altered strains of V. cholerae O1 isolated in Zambia and emphasizes the need for further studies to follow the trends of evolutionary changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0950268811000926 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
January 2025
Department Medical Laboratory Technology, College of Medical Technology, University of Al-Farahidi, Baghdad, Iraq.
Pseudomonas aeruginosa is a key concern in clinical settings due to its high level of resistance to antibiotics, making infections given rise to this bacterium very problematic to treat. The rise of multidrug-resistant bacteria poses a danger to treatments and stresses the necessity to find new antimicrobial drugs. In a neoteric study, P.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Jiangxi Key Laboratory of Oncology (2024SSY06041), Jiangxi Cancer Hospital & Institute, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330029, P.R. China.
Uropathogens, particularly bacteria, can infect any part of the urinary tract and cause bacteriuria. Our study aimed to examine the antibiotic-resistant profile, associated risk factors, and phenotypic and genotypic features of ESBL, carbapenemase, and mcr resistance genes in multidrug-resistant bacteria. Samples were inoculated on culture media, identified using standard biochemical tests, and species confirmation was performed via 16S rRNA gene amplification.
View Article and Find Full Text PDFMicrobiome
January 2025
Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.
Background: The main application of cork is the production of stoppers for wine bottles. Cork sometimes contains 2,4,6-trichloroanisole, a compound that, at a concentration of ng/L, produces an unpleasant musty odor that destroys the organoleptic properties of wine and results in enormous economic losses for wineries and cork industries. Cork can exhibit a defect known as yellow stain, which is associated with high levels of 2,4,6-trichloroanisole.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
Background: Plastic pollution is a significant environmental problem caused by its high resistance to degradation. One potential solution is polyhydroxybutyrate (PHB), a microbial biodegradable polymer. Mexico has great uncovered microbial diversity with high potential for biotechnological applications.
View Article and Find Full Text PDFCommun Biol
January 2025
Faculty of Science, Ibaraki University, Mito, Japan.
Halorhodospira (Hlr.) halophila strain BN9622 is an extremely halophilic and alkaliphilic purple phototrophic bacterium and has been widely used as a model for exploring the osmoadaptive and photosynthetic strategies employed by phototrophic extreme halophiles that enable them to thrive in hypersaline environments. Here we present the cryo-EM structures of (1) a unique native Hlr.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!