Conservative models: parametric entropy vs. temporal entropy in outcomes.

Ground Water

Department of Earth and Environmental Sciences, Wright State University, 3640 Coln. Glenn Hwy., Dayton, OH 45435, USA.

Published: June 2012

The geologic architecture in aquifer systems affects the behavior of fluid flow and the dispersion of mass. The spatial distribution and connectivity of higher-permeability facies play an important role. Models that represent this geologic structure have reduced entropy in the spatial distribution of permeability relative to models without structure. The literature shows that the stochastic model with the greatest variance in the distribution of predictions (i.e., the most conservative model) will not simply be the model representing maximum disorder in the permeability field. This principle is further explored using the Shannon entropy as a single metric to quantify and compare model parametric spatial disorder to the temporal distribution of mass residence times in model predictions. The principle is most pronounced when geologic structure manifests as preferential-flow pathways through the system via connected high-permeability sediments. As per percolation theory, at certain volume fractions the full connectivity of the high-permeability sediments will not be represented unless the model is three-dimensional. At these volume fractions, two-dimensional models can profoundly underrepresent the entropy in the real, three-dimensional, aquifer system. Thus to be conservative, stochastic models must be three-dimensional and include geologic structure.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1745-6584.2011.00832.xDOI Listing

Publication Analysis

Top Keywords

geologic structure
12
spatial distribution
8
high-permeability sediments
8
volume fractions
8
model
6
entropy
5
conservative models
4
models parametric
4
parametric entropy
4
entropy temporal
4

Similar Publications

Germanium is known to occupy tetrahedral sites by substituting silicon in germanosilicate zeolites. In this study, we present pioneering findings regarding the synthesis of zeolites with an MFI structure (GeMFI) incorporating a high germanium amount (16% Ge). Remarkably, the germanium atoms feature a slight electron deficiency with respect to GeO, and the typical coordination number of 4, as usually reported for the germanosilicate zeolites, is exceeded, giving rise to Ge dimers in a double-bridge configuration.

View Article and Find Full Text PDF

Experimental Investigation of Cadmium Isotope Fractionation during Adsorption on Montmorillonite and Kaolinite.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.

Cadmium (Cd) isotopes have recently emerged as novel tracers of Cd sources and geochemical processes. Widespread clay minerals play a key role in Cd migration due to their strong adsorption capacity, but the mechanism of Cd isotope fractionation during adsorption onto clay minerals is poorly understood. Here, we experimentally investigated the adsorption mechanisms of Cd on montmorillonite (2:1) and kaolinite (1:1) by using extended X-ray absorption fine structure (EXAFS) spectroscopy.

View Article and Find Full Text PDF

Unlocking seismic slope stability for risk assessment.

MethodsX

June 2025

National Advanced IPv6 Centre (Nav6), School of Computer Sciences, Universiti Sains Malaysia, 1800 Penang, Malaysia.

Slope instability represents a substantial secondary hazard post-earthquake, leading to considerable socio-economic losses from the destruction of structures, infrastructure, and human lives. This study addresses the urgent need for precise evaluation of seismic slope stability, a subject that has gained significant attention in earthquake engineering over the past decade. A theoretical framework is proposed that utilizes an improved Sarma method, estimating seismic forces and safety factors based on limit equilibrium theory.

View Article and Find Full Text PDF

Impact of grazing by multiple Daphnia species on wastewater bacterial communities.

Sci Total Environ

January 2025

Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada. Electronic address:

Understanding the dynamics of fecal bacterial communities is crucial for managing public health risks and protecting drinking water resources. While extensive research exists on how abiotic factors influence the survival of fecal microbial communities in water, less attention has been paid to the impact of predation by higher organisms, such as the widely distributed grazer Daphnia. Nevertheless, Daphnia plays a significant role in regulating bacterial communities in natural aquatic ecosystems, and recent studies highlighted its potential as a biofilter in alternative tertiary wastewater treatment systems.

View Article and Find Full Text PDF

When underground tunnels in coal mines traverse geological structurally abnormal zones (faults, collapse columns, fractured zones, etc.), excavation-induced unloading leads to instability and failure of the engineering rock mass. Rock masses in fractured zones are in elastic, plastic, and post-peak stress states, and the process of excavation through these zones essentially involves unloading under full stress paths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!