Electrodeposition of hierarchical ZnO nanorod-nanosheet structures and their applications in dye-sensitized solar cells.

ACS Appl Mater Interfaces

Department of Energy and Resources Engineering, Peking University, Beijing 100871, People's Republic of China.

Published: July 2011

We present a two-step electrochemical deposition process to synthesize hierarchical zinc oxide (ZnO) nanorod-nanosheet structures on indium tin oxide (ITO) substrate, which involves electrodeposition of ZnO nanosheet arrays on the conductive glass substrate, followed by electrochemical growth of secondary ZnO nanorods on the backbone of the primary ZnO nanosheets. The formation mechanism of the hierarchical nanostructure is discussed. It is demonstrated that annealing treatment of the primary nanosheets synthesized by the first-step deposition process plays a key role in synthesizing the hierarchical nanostructure. Photovoltaic properties of dye-sensitized solar cells (DSSCs) based on hierarchical ZnO nanostructures are investigated. The hierarchical ZnO nanorod-nanosheet DSSC exhibits improved device performance compared to the DSSC constructed using photoelectrode of bare ZnO nanosheet arrays. The improvement can be attributed to the enhanced dye loading, which is caused by the enlargement of internal surface area within the nanostructure photoelectrode. Furthermore, we perform a parametric study to determine the optimum geometric dimensions of the hierarchical ZnO nanorod-nanosheet photoelectrode through adjusting the preparation conditions of the first- and second-step deposition process. By utilizing a hierarchical nanostructure photoelectrode with film thickness of about 7 μm, the DSSC with an open-circuit voltage of 0.74 V and an overall power conversion efficiency of 3.12% is successfully obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am2002789DOI Listing

Publication Analysis

Top Keywords

hierarchical zno
16
zno nanorod-nanosheet
16
deposition process
12
hierarchical nanostructure
12
zno
9
nanorod-nanosheet structures
8
dye-sensitized solar
8
solar cells
8
zno nanosheet
8
nanosheet arrays
8

Similar Publications

Boosting Impedance Matching by Depositing Gradiently Conductive Atomic Layers on Porous Polyimide for Lightweight, Flexible, Broadband, and Strong Microwave Absorption.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.

Gradient structures are effective for microwave absorbing but suffer from inadequate lightweight and poor flexibility, making them fall behind the comprehensive requirements of electromagnetic protection. Herein, we propose a hierarchical gradient structure by integration with porous and sandwich structures. Specifically, polyimide (PI) foams are used as a robust and flexible skeleton, in which the foam cell walls are sandwiched by TiCT, ZnO, and ZrO atomic layers in sequence.

View Article and Find Full Text PDF

Colloidal ZnAl-Layered Double Hydroxide Nanomaterials for Effective Prevention of SARS-CoV-2.

ACS Appl Bio Mater

December 2024

Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.

SARS-CoV-2 is a threat to global public health, which requires the development of safe measures to reduce the spread of this coronavirus. Herein, in this study, we prepared and examined potential antiviral agents based on ZnAl-layered double hydroxide (ZnAl-LDH) materials. ZnAl-LDH-based samples were synthesized via a one-pot low-temperature coprecipitation method, which features an ultrathin structure.

View Article and Find Full Text PDF

The use of metal oxide catalysts to enhance plasma CO reduction has seen significant recent development towards processes to reduce greenhouse gas emissions and produce renewable chemical feedstocks. While plasma reactors are effective at producing the intended chemical transformations, the conditions can result in catalyst degradation. Atomic layer deposition (ALD) can be used to synthesize complex, hierarchically structured metal oxide plasma catalysts that, while active for plasma CO reduction, are potentially vulnerable to degradation due to their high surface area and nanoscopic thickness.

View Article and Find Full Text PDF

Hollow urchin-like substrates have been widely interested in the field of surface-enhanced Raman scattering (SERS) and photocatalysis. However, most reported studies are simple nanoscale urchin-like substrate with limited light trapping range and complicated preparation process. In this paper, a simple and effective controllable synthesis strategy based on micro-nano hierarchical urchin-like ZnO/Ag hollow spheres was prepared.

View Article and Find Full Text PDF

The stability of aqueous zinc metal anodes is still constrained by their severe dendrite growth. Optimizing electric field distribution and crystallography to modulate the diffusion and deposition behavior of zinc ions can effectively suppress dendrite growth. However, the fabrication strategy to directly endow specific textured zinc anodes with gradient electric field distribution is still lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!