CD-1 mice received single intraperitoneal (IP) doses of caffeine-sodium benzoate (caffeine doses: 0, 20 and 40 mg/kg) followed by injections of alprazolampropylene glycol (0, 0.05, and 2 mg/kg, IP) to determine brain concentrations, effects on in vivo receptor binding of a specific high-affinity benzodiazepine receptor ligand [3H]Ro15-1788, and effects on motor activity over a 1-h period. A behavioral monitoring device, using infrared sensors, measured horizontal and ambulatory activity. Caffeine produced significant increases in all motor activity measures as compared to vehicle treatment, with low dose caffeine (with brain concentrations of 13 micrograms/g) stimulating activity to a greater degree than the high dose (with brain concentrations of 30 micrograms/g). The overall effect of caffeine on benzodiazepine receptor binding was not significant. Alprazolam significantly diminished motor activity and altered benzodiazepine receptor binding. Low dose alprazolam increased binding, while the high dose diminished it. Caffeine and alprazolam antagonized each other's behavioral effects in this study, but did not alter each other's uptake into brain. Alprazolam's antagonism of caffeine-induced motor stimulation was associated with decreases in receptor binding, whereas caffeine's reversal of alprazolam-induced motor depression was not associated with any changes in binding. The lack of a clear association between drug effects on benzodiazepine binding and on motor activity suggests that behavioral effects of caffeine and alprazolam may be mediated by other sites in addition to the benzodiazepine receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02244234 | DOI Listing |
Sci Rep
January 2025
Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Brain Electrophysiology and Epilepsy Lab (BEE-L), Epilepsy and EEG Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
We aimed to study the effect of Parkinson's disease (PD) and motor-cognitive load on the interplay between activation level and spatial complexity. To that end, 68 PD patients and 30 controls underwent electroencephalography (EEG) recording while executing visual single- and dual- Go/No-go tasks. The EEG underwent source localization, followed by parcellation of the neural activity into 116 regions of interest.
View Article and Find Full Text PDFJ Neurosci
January 2025
Arizona State University, Department of Psychology, Tempe, AZ, 85287 USA.
The cerebellum, identified to be active during cognitive and social behavior, has multisynaptic connections through the cerebellar nuclei (CN) and thalamus to cortical regions, yet formation and modulation of these pathways are not fully understood. Perineuronal nets (PNNs) respond to changes in local cellular activity and emerge during development. PNNs are implicated in learning and neurodevelopmental disorders, but their role in the CN during development is unknown.
View Article and Find Full Text PDFPhys Life Rev
December 2024
Community Healthcare Center Dr. Adolf Drolc Maribor, Ulica talcev 9, 2000 Maribor, Slovenia; Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia; Complexity Science Hub, Metternichgasse 8, 1080 Vienna, Austria; Department of Physics, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea. Electronic address:
Synchrony in neuronal networks is crucial for cognitive functions, motor coordination, and various neurological disorders. While traditional research has focused on pairwise interactions between neurons, recent studies highlight the importance of higher-order interactions involving multiple neurons. Both types of interactions lead to complex synchronous spatiotemporal patterns, including the fascinating phenomenon of chimera states, where synchronized and desynchronized neuronal activity coexist.
View Article and Find Full Text PDFPLoS One
January 2025
School of Humanities and Social Science, Xi'an Jiaotong University, Xi'an, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!