Disc degeneration is associated with several changes in the physicochemical environment of intervertebral disc cells. Nucleus pulposus (NP) cells in the center of degenerated discs are exposed to decreased glucose supply, osmolarity, pH, and oxygen levels. To understand the complexity of these interactions on a cellular level, we designed standardized experiments in which we compared responses to these environmental factors under normal levels with those seen under two different degrees of disc degeneration. We hypothesized that these changes in environmental stimuli influence gene expression of matrix proteins and matrix degrading enzymes and alter their responses to cyclic hydrostatic pressure (HP). Our results suggest that a simulation of degenerative conditions influences the degradation of disc matrix through impairing matrix formation and accelerating matrix resorption via up- or down-regulation of the respective target genes. The greatest effects were seen for decreases in glucose concentration and pH. Low oxygen had little influence. HP had little direct effect but appeared to counteract matrix degradation by reducing or inverting some of the adverse effects of other stimuli. For ongoing in vitro studies, interactions between mechanical stimuli and factors in the physicochemical environment should not be ignored as these could markedly influence results.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.21481DOI Listing

Publication Analysis

Top Keywords

nucleus pulposus
8
pulposus cells
8
disc degeneration
8
physicochemical environment
8
matrix
7
interactions environmental
4
environmental conditions
4
conditions mechanical
4
mechanical loads
4
influence
4

Similar Publications

To investigate the effects of long non-coding RNA KLHL7-AS1 (LncRNA KLHL7-AS1) on the proliferation and apoptosis of nucleus pulposus cells under oxidative stress and its mechanisms. Human nucleus pulposus cells (HUM-iCell-s012) were divided into 4 groups, and unoxidized nucleus pulposus cells were transfected with an empty pcDNA vector (pcDNA-control) to serve as the blank control group. Based on previous studies on oxidative stress-induced nucleus pulposus cell senescence and preliminary experiments, oxidative stress was induced by treating nucleus pulposus cells with 400 μmol/L HO.

View Article and Find Full Text PDF

In this study, we explored the impact of different biomechanical loadings on lumbar spine motion segments, particularly concerning intervertebral disc degeneration (IVDD). We aimed to uncover the cellular milieu and mechanisms driving ossification in the nucleus pulposus (NP) during IVDD, a process whose underlying mechanisms have remained elusive. The study involved the examination of fresh NP tissue from the L3-S1 segment of five individuals, either with IVDD or healthy.

View Article and Find Full Text PDF

Background: Chordoma, characterized as a slow growing yet locally invasive and destructive bone tumor mainly emerging in the sacrum and clivus, presents a unique challenge due to its rarity, hampering the development of effective treatment strategies. Comprehensive understanding of tumor biology is crucial to suggest novel treatment modalities. Reactive oxygen species (ROS), a family of chemically reactive and unstable oxygen derivatives, are controlled by an intracellular antioxidant system to maintain homeostasis.

View Article and Find Full Text PDF

Cartilage is a connective tissue composed of mainly water, collagen (COL) and proteoglycans (PGs) including chondroitin sulfate (CS). Near-infrared (NIR) spectroscopy is adequate for examination of soft and hard tissues with large amount of water non-destructively and non-invasively. We measured tablets containing CS and COL using NIR spectroscopy to develop an evaluation method for PGs in cartilage non-destructively and non-invasively.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IVDD) is a major contributor to chronic back pain and disability, with limited effective therapeutic options. Current treatment options, including conservative management and surgical interventions, often fail to effectively halt disease progression and come with notable side effects. IVDD is characterized by the breakdown of the extracellular matrix (ECM) and the infiltration of inflammatory cells, which exacerbate disc degeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!