The blood-spinal cord barrier (BSCB) is the functional equivalent of the blood-brain barrier (BBB) in the sense of providing a specialized microenvironment for the cellular constituents of the spinal cord. Even if intuitively the BSCB could be considered as the morphological extension of the BBB into the spinal cord, evidence suggests that this is not so. The BSCB shares the same principal building blocks with the BBB; nevertheless, it seems that morphological and functional differences may exist between them. Dysfunction of the BSCB plays a fundamental role in the etiology or progression of several pathological conditions of the spinal cord, such as spinal cord injury, amyotrophic lateral sclerosis, and radiation-induced myelopathy. This review summarizes current knowledge of the morphology of the BSCB, the methodology of studying the BSCB, and the potential role of BSCB dysfunction in selected disorders of the spinal cord, and finally summarizes therapeutic approaches to the BSCB.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.22421DOI Listing

Publication Analysis

Top Keywords

spinal cord
20
blood-spinal cord
8
cord barrier
8
bscb
8
cord
6
spinal
5
barrier morphology
4
morphology clinical
4
clinical implications
4
implications blood-spinal
4

Similar Publications

Blocking the p38 MAPK Signaling Pathway in the Rat Hippocampus Alleviates the Depressive-like Behavior Induced by Spinal Cord Injury.

ACS Chem Neurosci

January 2025

Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, the first Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi 330006, China.

Patients with spinal cord injury (SCI) may develop depression, which can affect their rehabilitation. However, the underlying mechanism of depression in SCI patients remains unclear. Previous studies have revealed increased p38 MAPK phosphorylation in the rat hippocampus after SCI, accompanied by depression-like behaviors.

View Article and Find Full Text PDF

Lower red blood cell count is a risk factor for higher D-dimer level in patients with spinal cord injury: A five year retrospective cross-sectional study.

J Spinal Cord Med

January 2025

Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China.

Objectives: This study aims to elucidate the relationship between red blood cell (RBC) count and D-dimer levels in patients with spinal cord injury, with the goal of identifying potential therapeutic targets for minimizing D-dimer levels.

Study Design: An observational, retrospective, cross-sectional, single center study.

Setting: Individuals with SCI (576 cases) admitted to a rehabilitation medicine department.

View Article and Find Full Text PDF

Medial orbitofrontal cortex structure, function, and cognition associates with weight loss for laparoscopic sleeve gastrectomy.

Obesity (Silver Spring)

February 2025

Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Objective: The objective of this study was to investigate underlying mechanisms of long-term effective weight loss after laparoscopic sleeve gastrectomy (LSG) and effects on the medial orbitofrontal cortex (mOFC) and cognition.

Methods: A total of 18 individuals with obesity (BMI ≥ 30 kg/m) underwent LSG. Clinical data, cognitive scores, and brain magnetic resonance imaging scans were evaluated before LSG and 12 months after LSG.

View Article and Find Full Text PDF

Progress in spinal cord organoid research: advancing understanding of neural development, disease modelling, and regenerative medicine.

Biomater Transl

November 2024

Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China.

Stem cell-derived spinal cord organoids (SCOs) have revolutionised the study of spinal cord development and disease mechanisms, offering a three-dimensional model that recapitulates the complexity of native tissue. This review synthesises recent advancements in SCO technology, highlighting their role in modelling spinal cord morphogenesis and their application in neurodegenerative disease research. We discuss the methodological breakthroughs in inducing regional specification and cellular diversity within SCOs, which have enhanced their predictive ability for drug screening and their relevance in mimicking pathological conditions such as neurodegenerative diseases and neuromuscular disorders.

View Article and Find Full Text PDF

Background: Community integration (CI) is the ultimate goal of rehabilitation for individuals with disabilities. It plays a significant role in restoring their social functioning and facilitating their reintegration into community and family life. However, no studies have utilized bibliometric methods to explore community integration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!