AI Article Synopsis

Article Abstract

The recently identified endothelium-derived peptide, endothelin, is a potent vasoconstrictor, but also binds specifically to many types of smooth muscle and to nerve tissue. Endothelin has been detected in plasma and may have physiological or pathological functions. Like other agonists, endothelin increases the turnover of phosphatidyl inositol and liberates intracellular stocks of Ca2+. It also increases plasmalemmal Ca2+ permeability, an effect that is antagonized by calcium entry blockers in some tissues. However, the characteristics of this antagonism are not always typical of that seen when other types of agonists are employed. It seems that in at least some cell types endothelin might activate specific L-type Ca2+ channels indirectly, perhaps secondarily to the activation of another type of cation channel. The endothelin originally described is one of a family of peptides that are closely related to the sarafotoxins. The comparative pharmacology of these peptides and of some analogues of the originally described endothelin have revealed some surprising differences and may indicate the existence of different endothelin receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00969926DOI Listing

Publication Analysis

Top Keywords

endothelin
8
originally described
8
endothelin review
4
review effects
4
effects mechanisms
4
mechanisms action
4
action identified
4
identified endothelium-derived
4
endothelium-derived peptide
4
peptide endothelin
4

Similar Publications

We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).

View Article and Find Full Text PDF

Sotatercept in pulmonary hypertension and beyond.

Eur J Clin Invest

January 2025

Department of Surgical, Medical and Molecular Pathology and Critical Area, Laboratory of Biochemistry, University of Pisa, Pisa, Italy.

Sotatercept binds free activins by mimicking the extracellular domain of the activin receptor type IIA (ACTRIIA). Additional ligands are BMP/TGF-beta, GDF8, GDF11 and BMP10. The binding with activins leads to the inhibition of the signalling pathway and the deactivation of the bone morphogenic protein (BMP) receptor type 2.

View Article and Find Full Text PDF

Background: The binding of endothelin-1 (ET-1) to endothelin type A receptor (ETAR) performs a critical action in pulmonary arterial smooth muscle cell (PASMC) proliferation leading to pulmonary vascular structural remodeling. More evidence showed that cystathionine γ-lyase (CSE)-catalyzed endogenous hydrogen sulfide (HS) was involved in the pathogenesis of cardiovascular diseases. In this study, we aimed to explore the effect of endogenous HS/CSE pathway on the ET-1/ETAR binding and its underlying mechanisms in the cellular and animal models of PASMC proliferation.

View Article and Find Full Text PDF

Contemporary anticancer drugs are often accompanied by varying degrees of cardiovascular toxicity, with hypertension emerging as one of the most prevalent side effects, particularly linked to inhibitors of vascular endothelial growth factor receptor (VEGFR) and tyrosine kinase inhibitors (TKIs). Hypertension induced by cancer therapies contributes to increased cardiovascular mortality in cancer patients and survivors. Given the shared common risk factors and overlapping pathophysiological mechanisms, hypertension is also a prevalent comorbidity in this patient population.

View Article and Find Full Text PDF

Background: There is a critical time window of post-stroke neuroplasticity when spontaneous behavioral recovery occurs. Potential factors responsible for this heightened plasticity are the reduction of parvalbumin-immunoreactive (PV+) interneuron inhibitory signaling and the disappearance of extracellular matrix synaptic stabilizers called perineuronal net(s; PNN/PNNs).

Objective: This study investigated whether behavioral recovery during this critical period following stroke is associated with changes in densities of PV+ interneurons and PNNs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!