Background And Objectives: The increasing incidence of non-alcoholic fatty liver diseases (NAFLD) and the consequent progression to cirrhosis is expected to become a major cause of liver transplantation. This will exacerbate the organ donor shortage and mean that 'marginal' fatty liver grafts are more frequently used. Autofluorescence spectroscopy is a fast, objective, and non-destructive method to detect change in the endogenous fluorophores distribution and could prove to be a valuable tool for NAFLD diagnosis and transplant graft assessment.

Materials And Methods: A system was constructed consisting of a fibre probe with two laser diodes that provided excitation light at 375 and 405 nm, and an imaging spectrograph system. This was used to distinguish fluorescence spectra acquired from the harvested livers from mice with NAFLD of differing severity (healthy, mild steatotic and steatohepatitic). The fluorescence data were entered into a sparse multiclass probabilistic algorithm for disease classification. Histopathology, thiobarbituric acid reactive substances (TBARS) and alanine transaminase (ALT) assays were conducted in addition to the fluorescence measurements

Results: TBARS and ALT assays enabled differentiation of the steatohepatitic group from the mild steatosis and control groups (P ≤ 0.028) but failed to separate the mild steatotic group from the control group. The three groups were all clearly differentiated from each other using fluorescence spectroscopy, and classification accuracy was found to be 95%.

Conclusion: Fluorescence spectroscopy appears to be a promising approach for the analysis of diseased liver tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lsm.21064DOI Listing

Publication Analysis

Top Keywords

fluorescence spectroscopy
12
fatty liver
12
non-alcoholic fatty
8
mild steatotic
8
alt assays
8
liver
5
fluorescence
5
multi-excitation fluorescence
4
spectroscopy
4
spectroscopy analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!