Preparation and atomic force microscopy of quadruplex DNA.

Methods Mol Biol

Department of Chemistry and Physics, University of New England, Biddeford, ME, USA.

Published: December 2011

The purpose of this chapter is to provide detailed instructions for the preparation and atomic force microscopy (AFM) imaging of linear chains of quadruplex DNA (a.k.a. "G-wire DNA"). Successful self-assembly of long chain quadruplex DNA requires pure concentrated guanine-rich oligonucleotide sequence (GROs) and monovalent cations in a growth buffer. AFM imaging of individual G-wire DNA strands requires many carefully monitored steps, including substrate preparation, G-wire concentration, adsorption onto substrate, rinsing, drying, appropriate selection/use of imaging probes, and dry atmosphere imaging conditions. Detailed step-wise instructions are provided.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-142-0_8DOI Listing

Publication Analysis

Top Keywords

quadruplex dna
12
preparation atomic
8
atomic force
8
force microscopy
8
afm imaging
8
microscopy quadruplex
4
dna
4
dna purpose
4
purpose chapter
4
chapter provide
4

Similar Publications

Antiproliferative activity of selenium-enriched coumarin derivatives on the SK-N-SH neuroblastoma cell line: Mechanistic insights.

Eur J Med Chem

January 2025

Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China; Zhejiang Jieyuan Med-Tech Co., Ltd., Hangzhou, 311113, China. Electronic address:

Thirty selenium-containing coumarin derivatives were synthesized and evaluated for inhibitory activity against 17 malignant tumor cell lines. Among these, compound 11i demonstrated the most potent inhibition of neuroblastoma SK-N-SH cells, with an IC of 2.5 ± 0.

View Article and Find Full Text PDF

G-quadruplex structures in 16S rRNA regions correlate with thermal adaptation in prokaryotes.

Nucleic Acids Res

January 2025

Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, United States.

G-quadruplex (G4) structure is a nucleic acid secondary structure formed by guanine-rich sequences, playing essential roles in various biological processes such as gene regulation and environmental stress adaptation. Although prokaryotes growing at high temperatures have higher GC contents, the pattern of G4 structure associated with GC content variation in thermal adaptation remains elusive. This study analyzed 681 bacterial genomes to explore the role of G4 structures in thermal adaptation.

View Article and Find Full Text PDF

RNA G-quadruplexes (rG4s) are non-canonical secondary nucleic acid structures found in the transcriptome. They play crucial roles in gene regulation by interacting with G4-binding proteins (G4BPs) in cells. rG4-G4BP complexes have been associated with human diseases, making them important targets for drug development.

View Article and Find Full Text PDF

Early events in G-quadruplex folding captured by time-resolved small-angle X-ray scattering.

Nucleic Acids Res

January 2025

Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202, United States.

Time-resolved small-angle X-ray experiments are reported here that capture and quantify a previously unknown rapid collapse of the unfolded oligonucleotide as an early step in the folding of hybrid 1 and hybrid 2 telomeric G-quadruplex structures. The rapid collapse, initiated by a pH jump, is characterized by an exponential decrease in the radius of gyration from 24.3 to 12.

View Article and Find Full Text PDF

Environment-recognizing DNA nanodevices have proven promising for cellular manipulation and disease treatment, whereas how to sequentially respond to different cellular microenvironments remains a challenge. To this end, here we elaborate a logic-gated intelligent DNA nanorobot (Gi-DR) for the cascade response to inter- and intra-cellular microenvironments, thereby achieving lysosome-targeted cargo delivery for subcellular interference and tumor treatment with enhanced efficacy. Utilizing G-quadruplexes to respond to high-level K+ in cancer cell surrounding, this Gi-DR nanorobot can activate an aptamer-based transmembrane DNA machine that delivers molecular payloads to cellular lysosome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!