Bioactivity of benthic and picoplanktonic estuarine cyanobacteria on growth of photoautotrophs: inhibition versus stimulation.

Mar Drugs

CIIMAR/CIMAR, Laboratory of Ecotoxicology, Genomic and Evolution-Centre of Environmental and Marine Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.

Published: November 2011

Understanding potential biochemical interactions and effects among cyanobacteria and other organisms is one of the main keys to a better knowledge of microbial population structuring and dynamics. In this study, the effects of cyanobacteria from benthos and plankton of estuaries on other cyanobacteria and green algae growth were evaluated. To understand how the estuarine cyanobacteria might influence the dynamics of phytoplankton, experiments were carried out with the freshwater species Microcystis aeruginosa and Chlorella sp., and the marine Synechocystis salina and Nannochloropsis sp. exposed to aqueous and organic (70% methanol) crude extracts of cyanobacteria for 96 h. The most pronounced effect observed was the growth stimulation. Growth inhibition was also observed for S. salina and M. aeruginosa target-species at the highest and lowest concentrations of cyanobacterial extracts. The methanolic crude extract of Phormidium cf. chalybeum LEGE06078 was effective against S. salina growth in a concentration-dependent manner after 96 h-exposure. All of the cyanobacterial isolates showed some bioactivity on the target-species growth, i.e., inhibitory or stimulating effects. These results indicate that the analyzed cyanobacterial isolates can potentially contribute to blooms' proliferation of other cyanobacteria and to the abnormal growth of green algae disturbing the dynamic of estuarine phytoplankton communities. Since estuaries are transitional ecosystems, the benthic and picoplanktonic estuarine cyanobacteria can change both freshwater and marine phytoplankton succession, competition and bloom formation. Furthermore, a potential biotechnological application of these isolates as a tool to control cyanobacteria and microalgae proliferation can be feasible. This work is the first on the subject of growth responses of photoautotrophs to cyanobacteria from Atlantic estuarine environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111182PMC
http://dx.doi.org/10.3390/md9050790DOI Listing

Publication Analysis

Top Keywords

estuarine cyanobacteria
12
cyanobacteria
10
benthic picoplanktonic
8
picoplanktonic estuarine
8
growth
8
effects cyanobacteria
8
green algae
8
cyanobacterial isolates
8
estuarine
5
bioactivity benthic
4

Similar Publications

Harmful cyanobacterial blooms (HCB) have become a common issue in freshwater worldwide. Biological methods for controlling HCB are relatively cost effective and environmentally friendly. The strain of ascomycete GF6 was isolated from a water sample collected from the estuarine zone of the eastern part of the Gulf of Finland.

View Article and Find Full Text PDF

Microcystin (MC), a hepatotoxin produced by cyanobacteria, was introduced into the Indian River Lagoon (IRL), Florida, in 2005 through freshwater outflows. Since then, MC has been detected in humans, domestic animals, and wildlife in the lagoon. Potential public health effects associated with MC exposure along the IRL include an increased risk of non-alcoholic liver disease among area residents.

View Article and Find Full Text PDF

Water from the Lake Okeechobee watershed historically flowed south through the Everglades. Hydrologic alterations created the Lake Okeechobee Waterway, where lake water is periodically shunted east to the St. Lucie Estuary (C-44 canal) and west to the Caloosahatchee River and Estuary (C-43 canal).

View Article and Find Full Text PDF

Dual nitrogen and phosphorus reductions are needed for long-term mitigation of eutrophication and harmful cyanobacterial blooms in the hydrologically-variable San Francisco Bay Delta, CA.

Sci Total Environ

December 2024

Division of Integrated Sciences and Engineering, California Department of Water Resources, Sacramento, CA 95691, United States of America.

Cyanobacterial harmful algal blooms (CyanoHABs) are a major concern for water quality, public health and viability of aquatic ecosystems. Increased inputs of nutrients, i.e.

View Article and Find Full Text PDF

The second skin of macroalgae: Unveiling the biodiversity of epiphytic microalgae across environmental gradients of the Magellan Subantarctic ecoregion.

Sci Total Environ

December 2024

Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos, Universidad de Magallanes, Punta Arenas, Chile; Cape Horn International Center (CHIC), Universidad de Magallanes, Puerto Williams, Chile.

Article Synopsis
  • - The study focuses on the Magellan Subantarctic ecoregion, highlighting how accelerated glacial ice melt creates unique environmental conditions that impact marine biodiversity and epiphytic microalgal communities.
  • - Researchers analyzed epiphytic microalgal assemblages on various benthic macroalgae across sites with different glacial and oceanic influences, documenting 67 genera and noting significant variations in diversity based on environmental factors.
  • - Findings revealed that environmental gradients, particularly from glacial influence, are the primary drivers of epiphytic variation, with some potentially harmful microalgae identified, contributing to a better understanding of this complex ecosystem in light of climate change.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!