Properties of the manganese-based single-molecule magnet [Mn(6)(III)Cr(III)](3+) are studied. It contains six Mn(III) ions arranged in two bowl-shaped trinuclear triplesalen building blocks linked by a hexacyanochromate and exhibits a large spin ground state of S(t) = 21/2. The dominant structures in the electron emission spectra of [Mn(6)(III)Cr(III)](3+) resonantly excited at the L(3)-edge are the L(3)M(2, 3)M(2, 3), L(3)M(2, 3)V and L(3)VV Auger emission groups following the decay of the primary p(3/2) core hole state. Significant differences of the Auger spectra from intact and degraded [Mn(6)(III)Cr(III)](3+) show up. First measurements of the electron spin polarization in the L(3)M(2, 3)V and L(3)VV Auger emission peaks from the manganese constituents in [Mn(6)(III)Cr(III)](3+) resonantly excited at the L(3)-edge near 640 eV by circularly polarized synchrotron radiation are reported. In addition spin resolved Auger electron spectra of the reference substances MnO, Mn(2)O(3) and Mn(II)(acetate)(2)·4H(2)O are given. The applicability of spin resolved electron spectroscopy for characterizing magnetic states of constituent atoms compared to magnetic circular dichroism (MCD) is verified: the spin polarization obtained from Mn(II)(acetate)(2)·4H(2)O at room temperature in the paramagnetic state compares to the MCD asymmetry revealed for a star-shaped molecule with a Mn(4)(II)O(6) core at 5 K in an external magnetic field of 5 T.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/23/26/266001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!