Suppression of AMPK activation via S485 phosphorylation by IGF-I during hyperglycemia is mediated by AKT activation in vascular smooth muscle cells.

Endocrinology

Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA.

Published: August 2011

As a metabolic sensor, the serine/threonine protein kinase AMP-activated protein kinase (AMPK) promotes the adaptation of cells to signals arising from nutrients, hormones, and growth factors. The ability of IGF-I to stimulate protein synthesis is suppressed by AMPK, therefore, these studies were undertaken to determine whether IGF-I modulates AMPK activity. IGF-I dose-dependently suppressed phosphorylation of AMPK T172, and it stimulated AMPK S485 phosphorylation in vascular smooth muscle cells (VSMC). To determine whether stimulation of AMPK S485 phosphorylation was mediating this response, VSMC were transduced with a mutant AMPKα (AMPK S485A). Expression of this altered form inhibited the ability of IGF-I to suppress AMPK T172 activation, which resulted in inhibition of IGF-I-stimulated phosphorylation of P70S6 kinase. In contrast, expression of an AMPK S485D mutant resulted in constitutive suppression of AMPK activity and was associated with increased IGF-I-stimulated P70S6K phosphorylation and protein synthesis. The addition of a specific AKT inhibitor or expression of an AKT1 short hairpin RNA inhibited AMPK S485 phosphorylation, and it attenuated the IGF-I-induced decrease in AMPK T172 phosphorylation. Exposure to high glucose concentrations suppressed AMPK activity and stimulated S485 phosphorylation, and IGF-I stimulated a further increase in S485 phosphorylation and AMPK T172 suppression. We conclude that AMPK S485 phosphorylation negatively regulates AMPK activity by modulating the T172 phosphorylation response to high glucose and IGF-I. IGF-I stimulates S485 phosphorylation through AKT1. The results suggest that AMPK plays an inhibitory role in modulating IGF-I-stimulated protein synthesis and that IGF-I must down-regulate AMPK activity to induce an optimal anabolic response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138225PMC
http://dx.doi.org/10.1210/en.2011-0155DOI Listing

Publication Analysis

Top Keywords

s485 phosphorylation
32
ampk activity
20
ampk
18
ampk t172
16
ampk s485
16
phosphorylation
13
protein synthesis
12
igf-i
9
suppression ampk
8
s485
8

Similar Publications

Increased phosphorylation of AMPKα1 S485 in colorectal cancer and identification of PKCα as a responsible kinase.

Cancer Lett

December 2024

Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China. Electronic address:

Article Synopsis
  • The study investigates how phosphorylation of AMPKα1 at S485 affects colon cancer cells and identifies PKCα as the responsible kinase.
  • The results indicate that S485 phosphorylation is higher in colorectal cancer tissues compared to normal ones and is linked to increased cell growth and migration.
  • The research highlights that PKCα plays a key role in this phosphorylation, as its inhibition reduces S485 phosphorylation and impacts cancer cell behaviors under various nutritional conditions.
View Article and Find Full Text PDF

Glucose can activate the carbohydrate response element binding protein (ChREBP) transcription factor to control gene expressions in the metabolic pathways. The way of ChREBP involvement in human prostate cancer development remains undetermined. This study examined the interactions between prostate fibroblasts and cancer cells under the influences of ChREBP.

View Article and Find Full Text PDF

The Phosphorylation Status of Hsp82 Regulates Mitochondrial Homeostasis During Glucose Sensing in Saccharomyces cerevisiae.

J Mol Biol

July 2023

Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China. Electronic address:

Sensing extracellular glucose, budding yeast switches from aerobic glycolysis to oxidative phosphorylation to adapt to environmental changes. During the conversion of metabolic mode, mitochondrial function and morphology change significantly. Mitochondria are the main supply factories of energy for various life activities in cells.

View Article and Find Full Text PDF

Negative regulation of AMPK signaling by high glucose via E3 ubiquitin ligase MG53.

Mol Cell

February 2021

State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China; PKU-Nanjing Institute of Translational Medicine, Nanjing 211800, China. Electronic address:

As a master regulator of metabolism, AMP-activated protein kinase (AMPK) is activated upon energy and glucose shortage but suppressed upon overnutrition. Exaggerated negative regulation of AMPK signaling by nutrient overload plays a crucial role in metabolic diseases. However, the mechanism underlying the negative regulation is poorly understood.

View Article and Find Full Text PDF

A Single Site Phosphorylation on Hsp82 Ensures Cell Survival during Starvation in Saccharomyces cerevisiae.

J Mol Biol

October 2020

State Key Laboratory of Cognitive Neuroscience and Learning and Beijing Key Laboratory of Genetic Engineering Drugs & Biotechnology, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China. Electronic address:

Unicellular organisms live under diverse stressful conditions and must respond and adapt quickly to these stresses. When these stresses persist, cells favor a transition to quiescence. There are changes to many processes when cells begin their entry into quiescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!