Exposure to Cd(2+) and Pb(2+) has neurotoxic consequences for human health and may cause neurodegeneration. The study focused on the analysis of the presynaptic mechanisms underlying the neurotoxic effects of non-essential heavy metals Cd(2+) and Pb(2+). It was shown that the preincubation of rat brain nerve terminals with Cd(2+) (200 μM) or Pb(2+) (200 μM) resulted in the attenuation of synaptic vesicles acidification, which was assessed by the steady state level of the fluorescence of pH-sensitive dye acridine orange. A decrease in L-[(14)C]glutamate accumulation in digitonin-permeabilized synaptosomes after the addition of the metals, which reflected lowered L-[(14)C]glutamate accumulation by synaptic vesicles inside of synaptosomes, may be considered in the support of the above data. Using isolated rat brain synaptic vesicles, it was found that 50 μM Cd(2+) or Pb(2+) caused dissipation of their proton gradient, whereas the application of essential heavy metal Mn(2+) did not do it within the range of the concentration of 50-500 μM. Thus, synaptic malfunction associated with the influence of Cd(2+) and Pb(2+) may result from partial dissipation of the synaptic vesicle proton gradient that leads to: (1) a decrease in stimulated exocytosis, which is associated not only with the blockage of voltage-gated Ca(2+) channels, but also with incomplete filling of synaptic vesicles; (2) an attenuation of Na(+)-dependent glutamate uptake.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2011.05.014DOI Listing

Publication Analysis

Top Keywords

synaptic vesicles
20
cd2+ pb2+
16
proton gradient
12
neurotoxic effects
8
rat brain
8
200 μm
8
l-[14c]glutamate accumulation
8
synaptic
7
vesicles
5
cd2+
5

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Taipei Medical University, Taipei, Taiwan.

Understanding the physiological connection between platelets and brain function reveals new paradigms in neurodegenerative disease treatment. Platelets, traditionally associated with hemostasis, but also sometimes regarded as a mirror of neurons in the blood circulation, also encompass a spectrum of neurobiological roles, including neuroinflammation modulation, neurogenesis, and synaptic remodeling. These roles are primarily mediated through a rich array of bioactive molecules and extracellular vesicles (EVs), capable of traversing the blood-brain barrier.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, DISTALZ, Lille, France.

Background: BIN1 is a major susceptibility gene for AD and BIN1 protein interacts with Tau. However, the contribution of BIN1 and its isoforms to AD pathogenesis remains unclear. We recently described that human BIN1 isoform1 (BIN1iso1) induces an accumulation of early endosome vesicles leading to neurodegeneration in Drosophila retina and that the early endosome size regulation was conserved in human induced neurons.

View Article and Find Full Text PDF

Background: We recently demonstrated that large extracellular vesicles (EVs) released by Aβ-loaded microglia and carrying Aβ (Aβ-EVs) propagate synaptic dysfunction in the mouse brain by moving at the axon surface (Gabrielli et al., Brain, 2022; Falcicchia et al., Brain Commun, 2023).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Mayo Clinic, Jacksonville, FL, USA.

Background: Extracellular vesicles (EVs) carry pathogenic molecules and play a role in the disease spread, including aggregated tau proteins. The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery is responsible for the biogenesis of small EVs (exosomes), thus targeting critical ESCRT molecules can disrupt EV synthesis. We hypothesize that microglia-specific targeting of ESCRT-I molecule Tsg101 suppresses microglia-derived EV-mediated propagation of tau pathology, leading to amelioration of the disease phenotype of the tauopathy mouse model.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD), an untreatable synaptic disorder, is the most frequent cause of dementia. It is still unclear which mechanisms drive the early synapse dysfunction in the most common late-onset AD (LOAD). The second most important LOAD risk gene identified, BIN1, is an endocytic regulator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!