There is a great emphasis on research to discover methods aimed at enhancing the efficacy of drugs and reducing their toxicity and unwanted side effects. Prodrugs are biologically inactive compounds that are converted to actual drug molecule, through biotransformation, that combine with the receptors to produce the biological action. Prodrugs can thus be considered as drugs containing specialized nontoxic protective groups utilized in a transient manner to alter or eliminate the undesirable properties of the parent drug molecule. Hypertension is one of the leading risk factors for cardiovascular disease and represents a major health and economic burden. Most of the drugs for cardiovascular diseases have low oral bioavailability, short duration of action, first pass metabolism and variable lipohilicities. Out of the need to overcome these limitations, various prodrugs have been designed for antihypertensive agents. This review extensively focuses on various strategies used for design and development of prodrugs for the various classes of antihypertensives, emphasizing on the details regarding the need for prodrug synthesis for each class, structure, type of modification and goal achieved. It also provides an insight into the major advances in the field of antihypertensive prodrug research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/156802611797183285 | DOI Listing |
ACS Nano
January 2025
State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
Biofilm-induced chronic bacterial infections represent a significant challenge in modern medicine due to their resistance to conventional antibiotic treatments. Although photodynamic therapy (PDT) has emerged as a promising antibiotic-free antibacterial strategy, the hypoxic condition within biofilms and the lack of an effective local drug delivery system have limited the clinical effectiveness of photosensitizer (PS) agents. Herein, we propose a type of charge regulation-enhanced type I PS-loaded hydrogel dressing for treating biofilm infection.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Systems Pharmacology and Translational Therapeutics Laboratory, The Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy.
Inflammation plays a critical role in the pathogenesis of various diseases by promoting the acquisition of new functional traits by different cell types. Shared risk factors between cardiovascular disease and cancer, including smoking, obesity, diabetes, high-fat diet, low physical activity, and alcohol consumption, contribute to inflammation linked to platelet activation. Platelets contribute to an inflammatory state by activating various normal cells, such as fibroblasts, immune cells, and vascular cells.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
Background: Developing carrier-free nanomedicines via self-assembly of two antitumor drug molecules is a potential strategy for enhancing the combination treatment of tumors. Similarly, conventional chemotherapy combined with photodynamic therapy may synergistically improve the antitumor effect while minimizing the adverse reactions associated with antitumor treatment. Hyaluronic acid (HA) can bind to overexpressed HA receptors on the tumor cell surface, increasing cell internalization and resulting in good tumor-targeting properties.
View Article and Find Full Text PDFThe relentless emergence of antibiotic-resistant pathogens, particularly Gram-negative bacteria, highlights the urgent need for novel therapeutic interventions. Drug-resistant infections account for approximately 5 million deaths annually, yet the antibiotic development pipeline has largely stagnated. Venoms, representing a remarkably diverse reservoir of bioactive molecules, remain an underexploited source of potential antimicrobials.
View Article and Find Full Text PDFThe human heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is a prototypical RNA-binding protein essential in regulating a wide range of post-transcriptional events in cells. As a multifunctional protein with a key role in RNA metabolism, deregulation of its functions has been linked to neurodegenerative diseases, tumour aggressiveness and chemoresistance, which has fuelled efforts to develop novel therapeutics that modulates its RNA binding activities. Here, using a combination of Molecular Dynamics (MD) simulations and graph neural network pockets predictions, we showed that hnRNPA1 N-terminal RNA binding domain (UP1) contains several cryptic pockets capable of binding small molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!