Aurachins are quinoline alkaloids isolated from the myxobacterium Stigmatella aurantiaca. They are substituted with an isoprenoid side chain and act as potent inhibitors in the electron transport chain. A biosynthetic gene cluster that contains at least five genes (auaA-auaE) has been identified for aurachin biosynthesis. In this study, auaA, the gene encoding a putative prenyltransferase of 326 amino acids, was cloned and overexpressed in Escherichia coli. Biochemical investigations showed that AuaA catalyzes the prenylation of 2-methyl-4-hydroxyquinoline in the presence of farnesyl diphosphate (FPP), thereby resulting in the formation of aurachin D. The hydroxyl group at position C4 of the quinoline ring is essential for an acceptance by AuaA; this was concluded by testing 18 quinoline derivatives or analogues with AuaA and FPP. (1) H NMR and HR-EI-MS analyses of six isolated enzyme products revealed the presence of a farnesyl moiety at position C3 of the quinoline ring. K(M) values of 43 and 270 μM were determined for FPP and 2-methyl-4-hydroxyquinoline, respectively. Like other known membrane-bound prenyltransferases, the reaction catalyzed by AuaA is dependent on the presence of metal ions such as Mg(2+) , Mn(2+) and Co(2+) , although no typical (N/D)DXXD binding motif was found in the sequence.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.201100188DOI Listing

Publication Analysis

Top Keywords

stigmatella aurantiaca
8
catalyzes prenylation
8
prenylation 2-methyl-4-hydroxyquinoline
8
presence farnesyl
8
position quinoline
8
quinoline ring
8
auaa
6
auaa membrane-bound
4
membrane-bound farnesyltransferase
4
farnesyltransferase stigmatella
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!