Controlled syntheses give unique block oligomers with alternating flexible ethylene glycol and rigid perylenetetracarboxylic diimide (PDI) units. The number of rigid units vary from n=1 to 10. PDI units were stitched together by using efficient phosphoramidite chemistry. The resulting oligomers undergo folding in most solvents, including chloroform. In their ground state, these folded oligomers were characterized by using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), NMR spectroscopy, and electronic absorption spectroscopy. FTICR-MS revealed the exact masses of these sequence-controlled oligomers, which confirmed the chemical composition and validated the synthetic strategy. The NMR neighboring ring-current effect (NRE) indicates the formation of cofacial π stacks; the stacked aromatic rings have nearly coaxial alignment akin to a nanosoleniod. Nanosolenoidal shielding in π stacks causes all aromatic protons to shift upfield, whereas NOE in a cyclic hetero-chromophoric dimer supports a rotated, cofacial π-stacking orientation separated by about 3.5 Å. Electron-phonon coupling is much stronger than excitonic coupling in these self-folded PDI oligomers; thus, Franck-Condon factors dictate the observed spectral features in visible spectra. The absorbance spectrum exhibits weak hypochromism due to π stacking with increasing stacking units n. Finally, ab initio calculations support the experimental observations, indicating 3.5 Å cofacial spacing in which one molecule is rotated 30° from the eclipsed orientation and higher oligomers can adopt, without a compensating energy penalty, either the right/left-handed helices or the 1,3-eclipsed structures. Both theory and experiments validate the nano-π-solenoids and their novel photophysical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201100612 | DOI Listing |
Macromol Rapid Commun
November 2024
CNRS, UMR 7006, ISIS, 8 allée Gaspard Monge, Université de Strasbourg, Strasbourg, 67000, France.
A photo-assisted process is explored for improving the synthesis of oligo(triazole amide)s, which are prepared by solid phase synthesis using a repeated cycle of two reactions: amine-carboxylic acid coupling and copper-catalyzed azide-alkyne cycloaddition (CuAAC). The improvement of the second reaction is investigated herein. A catalytic system involving Cu(II)Cl, N,N,N',N″,N″-pentamethyldiethylenetriamine (PMDETA) and a titanocene photoinitiator is explored for reducing the reaction time of CuAAC.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
Maximizing the molecular information density requires simultaneously functionalizing distinct monomers and their coupling connections. However, current synthesis generally focuses on distinct monomers rather than coupling reactions because the multistep reactions significantly escalate the synthetic complexity in an exponential increase. Here, we report the two-dimensional nanoarchitectures (2DNs) of end-on oligomers, with versatile molecular structures and negative differential resistance (NDR), synthesized by programmed and surface-initiated step electrosynthesis based on the simultaneous utilization of six reactions including cross- and homocouplings.
View Article and Find Full Text PDFLangmuir
October 2024
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
Immobilizing catalysts and photosensitizers on an electrode surface is crucial in interfacial energy conversion. However, their combination for optimizing catalytic performance is an unpredictable challenge. Herein, we report that catalyst and photosensitizer monomers are selectively grafted one-by-one addition onto the electrode surface by interfacial electrosynthesis to achieve composition and sequence-controlled oligomer photoelectrocatalytic monolayers.
View Article and Find Full Text PDFSmall
November 2024
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
Interfacial electron transport in multicomponent systems plays a crucial role in controlling electrical conductivity. Organic-inorganic heterostructures electronic devices where all the entities are covalently bonded to each other can reduce interfacial electrical resistance, thus suitable for low-power consumption electronic operations. Programmed heterostructures of covalently bonded interfaces between ITO-ethynylbenzene (EB) and EB-zinc ferrite (ZF) nanoparticles, a programmed structure showing 67 978-fold enhancement of electrical current as compared to pristine NPs-based two terminal devices are created.
View Article and Find Full Text PDFNat Commun
June 2024
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China.
To emulate the ordered arrangement of monomer units found in natural macromolecules, single-unit monomer insertion (SUMI) have emerged as a potent technique for synthesizing sequence-controlled vinyl polymers. Specifically, numerous applications necessitate vinyl polymers encompassing both radically and cationically polymerizable monomers, posing a formidable challenge due to the distinct thiocarbonylthio end-groups required for efficient control over radical and cationic SUMIs. Herein, we present a breakthrough in the form of interconvertible radical and cationic SUMIs achieved through the manipulation of thiocarbonylthio end-groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!