Direct visualization at the single-cell level of siRNA electrotransfer into cancer cells.

Proc Natl Acad Sci U S A

CNRS (Centre National de Recherche Scientifique), IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077 Toulouse, France.

Published: June 2011

The RNA interference-mediated gene silencing approach is promising for therapies based on the targeted inhibition of disease-relevant genes. Electropermeabilization is one of the nonviral methods successfully used to transfer siRNA into living cells in vitro and in vivo. Although this approach is effective in the field of gene silencing by RNA interference, very little is known about the basic processes supporting siRNA transfer. In this study, we investigated, by direct visualization at the single-cell level, the delivery of Alexa Fluor 546-labeled siRNA into murine melanoma cells stably expressing the enhanced green fluorescent protein (EGFP) as a target gene. The electrotransfer of siRNA was quantified by time lapse fluorescence microscopy and was correlated with the silencing of egfp expression. A direct transfer into the cell cytoplasm of the negatively charged siRNA was observed across the plasma membrane exclusively on the side facing the cathode. When added after electropulsation, the siRNA was inefficient for gene silencing because it did not penetrate the cells. Therefore, we report that an electric field acts on both the permeabilization of the cell plasma membrane and on the electrophoretic drag of the negatively charged siRNA molecules from the bulk phase into the cytoplasm. The transfer kinetics of siRNA are compatible with the creation of nanopores, which are described with the technique of synthetic nanopores. The mechanism involved was clearly specific for the physico-chemical properties of the electrotransferred molecule and was different from that observed with small molecules or plasmid DNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127917PMC
http://dx.doi.org/10.1073/pnas.1103519108DOI Listing

Publication Analysis

Top Keywords

gene silencing
12
sirna
9
direct visualization
8
visualization single-cell
8
single-cell level
8
negatively charged
8
charged sirna
8
plasma membrane
8
level sirna
4
sirna electrotransfer
4

Similar Publications

Youthful Stem Cell Microenvironments: Rejuvenating Aged Bone Repair Through Mitochondrial Homeostasis Remodeling.

Adv Sci (Weinh)

January 2025

Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM).

View Article and Find Full Text PDF

Nb-FAR-1: A key developmental protein affects lipid droplet accumulation and cuticle formation in Nippostrongylus brasiliensis.

PLoS Negl Trop Dis

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.

Fatty acid and retinol binding proteins (FARs) are lipid-binding protein that may be associated with modulating nematode pathogenicity to their hosts. However, the functional mechanism of FARs remains elusive. We attempt to study the function of a certain FAR that may be important in the development of Nippostrongylus brasiliensis.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex.

View Article and Find Full Text PDF

Background: Geraniol 10-hydroxylase (G10H) is a cytochrome P450 monooxygenase involved in regulation, which is involved in the biosynthesis of monoterpene. However, G10H is not characterized at the enzymatic mechanism and regulatory function in .

Methods And Results: A gene related to the biosynthesis of monoterpenoid, geraniol 10-hydroxylase, has been cloned from the medicinal plant .

View Article and Find Full Text PDF

In this chapter, we provide a method for silencing target genes in epidermal cells via RNA interference. Specifically, we describe a protocol for transfection-mediated delivery of small interfering RNA oligonucleotides (siRNA). Functional assays are indispensable to characterize the biological consequences of gene knockdowns, and we also provide a method to analyze alterations in cell adhesion properties, consequent to knockdown of genes involved in this process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!