While current data indicate only free (unbound) drug is pharmacologically active and is most predictive of response, pharmacodynamic studies of vancomycin have been limited to measurement of total concentrations. The protein binding of vancomycin is thought to be approximately 50%, but considerable variability surrounds this estimate. The present study sought to determine the extent of vancomycin protein binding, to identify factors that modulate its binding, and to create and validate a prediction tool to estimate the extent of protein binding based on individual clinical factors. This single-site prospective cohort study included hospitalized adult patients treated with vancomycin and with a vancomycin serum concentration determination available. Linear regression was used to predict the free vancomycin concentration (f[vanco]) and to determine the clinical factors modulating vancomycin protein binding. Among the 50 patients in the study, the mean protein binding was 41.5%. The strongest predictor of f[vanco] was the total vancomycin concentration (total [vanco]), and this was modified by dialysis and total protein of ≥6.7 g/dl as covariates. The algebraic expression from the final prediction model was f[vanco] = 0.643 + 0.560 × total [vanco] - {0.067 × total [vanco] × D} - {0.071 × total [vanco] × TP} where D = 1 if dialysis dependent or 0 if not dialysis dependent, and TP = 1 if total protein is ≥6.7 g/dl or 0 if total protein is <6.7 g/dl. The R(2) of the final prediction model was 0.959 (P < 0.001). Validation of our model was performed in 13 patients, and the predictive performance was highly favorable (R(2) was 0.9, and bias and precision were 0.18 and 0.18, respectively). Prediction models such as ours can be utilized in future pharmacokinetics and pharmacodynamics studies evaluating the exposure-response profile and to determine the pharmacodynamic target of interest as it relates to the free concentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165330 | PMC |
http://dx.doi.org/10.1128/AAC.01674-10 | DOI Listing |
Mol Ther
January 2025
Department of Molecular Medicine, University of Southern Denmark; Odense, 5230, Denmark. Electronic address:
Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.
View Article and Find Full Text PDFAm J Case Rep
January 2025
Department of Neonatology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong, China.
BACKGROUND Cleidocranial dysplasia (CCD) is a rare (1: 1 000 000) autosomal dominant congenital skeletal dysplasia characterized by widely patent calvarial sutures, clavicular hypoplasia, supernumerary teeth, and short stature. Only a minority of the cases are diagnosed early after birth. We present another case of proven CCD presenting with typical neonatal phenotype to promote awareness of this rare disorder.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq.
Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.
Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).
BMC Genomics
January 2025
Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.
Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!