In primates and rodents, trophoblast cells synthesize and secrete into the maternal circulation a family of proteins known as pregnancy specific glycoproteins (PSG). The current study was undertaken to characterize the receptor for two members of the murine PSG family, PSG17 and PSG23. Binding of recombinant PSG17 and PSG23 to CHO-K1 and L929 cells and their derived mutants was performed to determine whether these proteins bound to cell surface proteoglycans. We also examined binding of these proteins to cells transfected with syndecans and glypican-1 by flow cytometry. The interaction with glycosaminoglycans was confirmed in solid phase assays. Our results show that PSG17 binds to CD9 and to cell surface proteoglycans while PSG23 binds only to the latter. We found that the amino acids involved in CD9 binding reside in the region of highest divergence between the N1-domains of murine PSGs. For both proteins, the N-terminal domain (designated as N1) is sufficient for binding to cells and the ability to bind cell surface proteoglycans is affected by the cell line employed to generate the recombinant proteins. We conclude that while substantially different at the amino acid level, some murine PSGs share with human PSG1 the ability to bind to cell surface proteoglycans and that at least one PSG binds to more than one type of molecule on the cell surface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142296 | PMC |
http://dx.doi.org/10.1016/j.placenta.2011.05.008 | DOI Listing |
J Mater Chem B
January 2025
Department of Electrical, Electronics and Communication Engineering, Indian Institute of Technology Dharwad, Karnataka - 580011, India.
Prostate cancer antigen 3 (PCA3) has emerged as a critical biomarker for the early detection of prostate cancer, complementing the traditional prostate-specific antigen (PSA) testing. This research presents a novel resistive sensor based on reduced graphene oxide (RGO) functionalized with glutaraldehyde (GA)/complementary single-stranded DNA (ss-DNA) for the detection of the PCA3 RNA. The device was meticulously characterized at each fabrication step to confirm the successful integration of the various layers on the sensor device, utilizing atomic force microscopy (AFM) which confirmed the increase in the thickness of the sensor from ∼1.
View Article and Find Full Text PDFOncol Rep
March 2025
Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.
Epidermal growth factor (EGF) binds with its surface receptor to stimulate gene expression and cancer cell proliferation. EGF stimulates cancer cell growth via phosphoinositide 3‑kinase (PI3K) and programmed cell death ligand 1 (PD‑L1) pathways. As an integrin αvβ3 antagonist, heteronemin exhibits potent cytotoxic effects against cancer cells.
View Article and Find Full Text PDFNatl Sci Rev
December 2024
Aix Marseille Univ, CEA, CNRS, Institute of Bioscience and Biotechnology of Aix Marseille, BIAM, Saint-Paul-Lez-Durance 13108, France.
Lipid droplets (LDs) are the major sites of lipid and energy homeostasis. However, few LD biogenesis proteins have been identified. Using model microalga , we show that ABHD1, an α/β-hydrolase domain-containing protein, is localized to the LD surface and stimulates LD formation through two actions: one enzymatic and one structural.
View Article and Find Full Text PDFJ Family Med Prim Care
December 2024
Histopathology, Department of Pathology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India.
Background: Ovarian tumors are the most prevalent neoplasms worldwide, affecting women of all ages. According to Globocan's 2022 projections, by 2050, the number of women diagnosed with ovarian cancer worldwide will increase by over 55% to 503,448. The number of women dying from ovarian cancer is projected to increase to 350,956 each year, an increase of almost 70% from 2022.
View Article and Find Full Text PDFRegen Ther
March 2025
Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan.
Objective: The skin is a complex organ that includes various stem cell populations. Current approaches for non-healing skin defects are sometimes inadequate and many attempts have been made to regenerate skin integrity. The aim of this review is to bridge the gap between basic research and clinical application of skin integrity regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!