Cassava (Manihot esculenta Crantz) is a widely consumed food in the tropics that naturally contains cyanogenic glycosides (cyanogens, mainly composed of linamarin, acetone cyanohydrin, and hydrocyanic acid). If cassava is not adequately processed to reduce the level of cyanogens prior to consumption, these compounds can lead to the formation of hydrocyanic acid in the gut. Exposure to hydrocyanic acid can cause symptoms ranging from vomiting and abdominal pain to coma and death. In 2008, a survey of ready-to-eat (RTE) cassava-based snack foods was undertaken to determine levels of cyanogens measured as total hydrocyanic acid. This survey was undertaken in response to the New South Wales Food Authority being alerted to the detection of elevated levels of cyanogens in an RTE cassava-based snack food. This survey took 374 samples of RTE cassava chips available in the Australian marketplace. Significant variation in the levels of total hydrocyanic acid were observed in the 317 samples testing positive for cyanogens, with levels ranging from 13 to 165 mg of HCN equivalents per kg (mean value, 64.2 mg of HCN eq/kg for positive samples). The results from this survey serve as a timely warning for manufacturers of RTE cassava chips and other cassava-based snack foods to ensure there is tight control over the levels of cyanogens in the cassava ingredient. Evidence from this survey contributed to an amendment to the Australia New Zealand Food Standards Code, which now prescribes a maximum level for hydrocyanic acid in RTE cassava chips of 10 mg of HCN eq/kg, which aligns with the Codex Alimentarius Commission international standard for edible cassava flour.

Download full-text PDF

Source
http://dx.doi.org/10.4315/0362-028X.JFP-10-557DOI Listing

Publication Analysis

Top Keywords

hydrocyanic acid
28
total hydrocyanic
12
cassava-based snack
12
levels cyanogens
12
rte cassava
12
cassava chips
12
chips australian
8
rte cassava-based
8
snack foods
8
hcn eq/kg
8

Similar Publications

Multimodal nanoenzyme-linked aptamer assay for Salmonella typhimurium based on catalysis and photothermal effect of PB@Au.

Mikrochim Acta

January 2025

Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong, College of Life Science, Normal University, Shandong Normal University, Jinan, 250014, People's Republic of China.

A composite nanomaterial of Prussian blue@gold nanoparticles (PB@Au) with catalytic and photothermal properties was proposed, which combined with anti-matrix interference aptamers to achieve robust specificity and sensitivity in the detection of Salmonella typhimurium (S. typhimurium). The detection probe, PB@Au-Aptamer (PB@Au-Apt), was designed to exhibit high specificity for the target and catalyze the signal generation to produce a color change, thereby enabling rapid detection.

View Article and Find Full Text PDF

The applications of nanomaterials in regenerative medicine encompass a broad spectrum. The functional nanomaterials, such as Prussian blue and its derivative nanoparticles, exhibit potent anti-inflammatory and antioxidant properties. By combining it with the corresponding scaffold carrier, the fusion of nanomaterials and biotherapy can be achieved, thereby providing a potential avenue for clinical treatment.

View Article and Find Full Text PDF

The origin of life on Earth remains one of the most perplexing challenges in biochemistry. While numerous bottom-up experiments under prebiotic conditions have provided valuable insights into the spontaneous chemical genesis of life, there remains a significant gap in the theoretical understanding of the complex reaction processes involved. In this study, we propose a novel approach using a roto-translationally invariant potential (RTIP) formulated with pristine Cartesian coordinates to facilitate the simulation of chemical reactions.

View Article and Find Full Text PDF

Strawberry (Fragaria × ananassa) is a horticultural crop known for its sensitivity to mechanical damage and susceptibility to postharvest decay. In recent years, various strategies have been implemented to enhance both the yield and quality of strawberries, among which the application of nitric oxide-producing compounds has garnered special attention. The present study aimed to investigate the effects of varying concentrations of sodium nitroprusside (SNP), specifically 0, 200, 400, and 600 μM, on strawberries (cv.

View Article and Find Full Text PDF

Wastewater contains various emerging contaminants, including heavy metals, residues of pesticides, and pharmaceuticals. Therefore, irrigation with wastewater can enhance heavy metal contamination in soil and adversely affect plant growth. To mitigate this problem, plant growth-promoting bacteria (PGPR) can improve plant growth under heavy metal stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!