Background And Objectives: The GLUT4 gene, which encodes glucose transporter 4, is a candidate gene for type 2 diabetes mellitus (T2DM). The aim of this study was to screen the GLUT4 gene for polymorphisms and to study association of such polymorphisms with T2DM in an Asian Indian population in southern India.

Methods: The GLUT4 gene was sequenced in 25 normal glucose tolerance (NGT) and 25 T2DM subjects, and the variants found were then genotyped by polymerase chain reaction-restriction fragment length polymorphism in a pilot study population of 552 NGT and 643 T2DM subjects, randomly selected from the Chennai Urban Rural Epidemiology Study. Two of the variants (rs5435 and the novel variant), which showed significantly higher minor allele frequency in T2DM compared with NGT individuals in the pilot study population, were then retested with an additional 465 NGT and 363 T2DM subjects, giving a final sample size of 1,017 NGT and 1,006 T2DM subjects.

Results: Sequencing of the GLUT4 gene revealed three known polymorphisms (rs5418, rs5421, and rs5435) and one novel T→G variant in the 3' untranslated region (UTR) at nucleotide position 6787483. The rs5418 and rs5421 polymorphisms did not show any association with diabetes. The rs5435 [Asn130Asn(C→T)] polymorphism was found to be associated with diabetes, with the odds ratio for the CT+TT genotype being 1.26 (95% confidence interval, 1.00-1.57; P=0.043) when the CC genotype was taken as reference. The frequency of the TG genotype of the novel 3'UTR T→G variant was significantly higher in diabetes subjects (1%) compared with NGT subjects (0.2%) (P=0.021). There was a significant difference in the proportion of the ACGT haplotype of the rs5418(A→G), rs5435(C→T), rs5421(C→G), and the T→G 3'UTR variant between the NGT (7.5%) and diabetes (5%) groups (P=0.003).

Conclusion: The rs5435 (C→T) polymorphism of the GLUT4 gene is associated with type 2 diabetes in this south Indian population.

Download full-text PDF

Source
http://dx.doi.org/10.1089/dia.2010.0219DOI Listing

Publication Analysis

Top Keywords

glut4 gene
24
type diabetes
12
t2dm subjects
12
gene polymorphisms
8
polymorphisms association
8
diabetes south
8
indian population
8
pilot study
8
study population
8
rs5435 novel
8

Similar Publications

Catharanthus roseus leaves have been traditionally described to possess potent antidiabetic activity and some leaf-specific alkaloids, including vindoline, have been studied for their antidiabetic potential. The aim of the present study was to validate the antidiabetic property of the plant with special reference to vindoline. An Ayurveda-based method was used to prepare the Swaras [leaf juice extract (LJE)] of three familial C.

View Article and Find Full Text PDF

Introduction: Lactic acid bacteria are prized for their probiotic benefits and gut health improvements. This study assessed five LAB isolates from Neera, with RAMULAB51 (, GenBank ON171686.1) standing out for its high hydrophobicity, auto-aggregation, antimicrobial activity, and enzyme inhibition.

View Article and Find Full Text PDF

Djulis ( Koidz.) possesses various biological activities, including anti-oxidant, anti-hyperglycemic, anti-aging and hepatoprotective properties. Although djulis husk is typically considered agricultural waste, there is value in exploring ways to utilize it effectively.

View Article and Find Full Text PDF

It is crucial to investigate new anti-diabetic agents and therapeutic approaches targeting molecules in potential signaling pathways for the treatment of Type 2 diabetes mellitus (T2DM). The objective of the study was to investigate the total phenolic content, antioxidant capacity, α-glucosidase, and α-amylase inhibitory activities of Bolanthus turcicus (B. turcicus), as well as their cytotoxic, anti-adipogenic, anti-diabetic, apoptotic, and anti-migration potential on adipocytes.

View Article and Find Full Text PDF

In-silico identification and validation of Silibinin as a dual inhibitor for ENO1 and GLUT4 to curtail EMT signaling and TNBC progression.

Comput Biol Chem

December 2024

Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 39, Guwahati, Assam, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, 39, Guwahati, Assam, India. Electronic address:

The aberrant metabolic reprogramming endows TNBC cells with sufficient ATP and lactate required for survival and metastasis. Hence, the intervention of the metabolic network represents a promising avenue to alleviate the Warburg effect in TNBC cells to impair their invasive and metastatic potential. Multitudinous in-silico analysis identified Enolase1 (ENO1) and the surface transporter protein, GLUT4 to be the potential targets for the abrogation of the metabolic network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!