A new wire array configuration has been used to create thin shell-like implosions in a cylindrical array. The setup introduces a ~5 kA, ~25 ns current prepulse followed by a ~140 ns current-free interval before the application of the main (~1 MA) current pulse. The prepulse volumetrically heats the wires which expand to ~1 mm diameter leaving no dense wire core and without development of instabilities. The main current pulse then ionizes all the array mass resulting in suppression of the ablation phase, an accelerating implosion, and no trailing mass. Rayleigh-Taylor instability growth in the imploding plasma is inferred to be seeded by μm-scale perturbations on the surface of the wires. The absence of wire cores is found to be the critical factor in altering the implosion dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.106.205002DOI Listing

Publication Analysis

Top Keywords

suppression ablation
8
ablation phase
8
wire array
8
current prepulse
8
main current
8
current pulse
8
wire
4
phase wire
4
array
4
array pinches
4

Similar Publications

Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels are crucial for detecting and transmitting nociceptive stimuli. Inflammatory pain is associated with sustained increases in TRPA1 and TRPV1 expression in primary sensory neurons. However, the epigenetic mechanisms driving this upregulation remain unknown.

View Article and Find Full Text PDF

Inadequate tendon healing and heterotopic bone formation result in substantial pain and disability, yet the specific cells responsible for tendon healing remain uncertain. Here we identify a CD26 tendon stem/progenitor cells residing in peritendon, which constitutes a primitive stem cell population with self-renewal and multipotent differentiation potentials. CD26 tendon stem/progenitor cells migrate into the tendon midsubstance and differentiation into tenocytes during tendon healing, while ablation of these cells led to insufficient tendon healing.

View Article and Find Full Text PDF

Heat acclimation defense against exertional heat stroke by improving the function of preoptic TRPV1 neurons.

Theranostics

January 2025

Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.

Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS.

View Article and Find Full Text PDF

Background: The relationship between premature ventricular contractions (PVC) and right ventricular (RV) function is not widely known. Left ventricular (LV) dysfunction due to PVC is known as PVC-induced cardiomyopathy (PIC) and suppressing the PVC substrate would improve LV function. The effect of PVC ablation on changes in RV function in patients with subtle RV subclinical dysfunction remains unknown.

View Article and Find Full Text PDF

Here we analyzed the relative contributions of CD4 regulatory T cells expressing Forkhead box protein P3 (FOXP3) and CD8 regulatory T cells expressing killer cell immunoglobulin-like receptors to the control of autoreactive T and B lymphocytes in human tonsil-derived immune organoids. FOXP3 and GZMB respectively encode proteins FOXP3 and granzyme B, which are critical to the suppressive functions of CD4 and CD8 regulatory T cells. Using CRISPR-Cas9 gene editing, we were able to achieve a reduction of ~90-95% in the expression of these genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!