Treatment of soft tissue defects with exposed bones and joints, resulting from trauma, infection, and surgical complications, represents a major challenge. The introduction of negative pressure wound therapy has changed many wound management practices. Negative pressure wound therapy has recently been used in the orthopedic field for management of traumatic or open wounds with exposed bone, nerve, tendon, and orthopedic implants. This article describes a case of a patient with a large soft tissue defect and exposed knee joint, in which negative pressure wound therapy markedly improved wound healing. A 50-year-old man presented with an ulceration of his left knee with exposed joint, caused by severe wound infections after open reduction and internal fixation of a patellar fracture. After 20 days of negative pressure wound therapy, a granulated wound bed covered the exposed bones and joint.To our knowledge, this is the first report of negative pressure wound therapy used in a patient with a large soft tissue defect with exposed knee joint. Despite the chronic wound secondary to infection, healing was achieved through the use of the negative pressure wound therapy, thus promoting granulation tissue formation and closing the joint. We suggest negative pressure wound therapy as an alternative option for patients with lower limb wounds containing exposed bones and joints when free flap transfer is contraindicated. Our result added to the growing evidence that negative pressure wound therapy is a useful adjunctive treatment for open wounds around the knee joint.

Download full-text PDF

Source
http://dx.doi.org/10.3928/01477447-20110427-27DOI Listing

Publication Analysis

Top Keywords

negative pressure
36
pressure wound
36
wound therapy
36
knee joint
16
wound
14
wounds exposed
12
exposed knee
12
soft tissue
12
exposed bones
12
negative
9

Similar Publications

Water conveyance channels in cold and arid regions pass through several saline-alkali soil areas. Canal water leakage exacerbates the salt expansion traits of such soil, damaging canal slope lining structures. To investigate the mechanical properties of saline clay, this study conducted indoor tests, including direct shear, compression, and permeation tests, and scanning electron microscopy (SEM) analysis of soil samples from typical sites.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) patients have varying degrees of cognitive impairment, but the specific pathogenic mechanism is still unclear. Meanwhile, poor compliance with continuous positive airway pressure (CPAP) in OSA prompts better solutions. This study aimed to identify differentially expressed genes between the non-obese OSA patients and healthy controls, and to explore potential biomarkers associated with cognitive impairment.

View Article and Find Full Text PDF

Introduction: Diabetes-related foot ulcer (DFU) is the leading cause for lower extremity amputations (LEAs) in western countries, and may cause social isolation, depression, and death. However, people with DFU are not offered the same prioritized care as cancer patients, despite comparable mortality rates. We therefore decided to create a clinical pathway for patients with DFU.

View Article and Find Full Text PDF

Objective: Aim: To improve the results of treatment of patients with chronic wounds of the lower extremities by using complex treatment, including surgical interventions, VAC- therapy, as well as studying the effect of negative pressure on bacterial films of wounds, based on microbiological examination and immune-histochemical data.

Patients And Methods: Materials and Methods: During the period from 2019 to 2023 at the department's clinic, 68 patients with chronic wounds of the lower extremities were examined and treated. These are mainly women (n=63) aged from 35 to 80 years.

View Article and Find Full Text PDF

Measurement and spectral analysis of medical shock wave parameters based on flexible PVDF sensors.

Phys Eng Sci Med

January 2025

School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100191, China.

Extracorporeal shock wave therapy (ESWT) achieves its therapeutic purpose mainly through the biological effects produced by the interaction of shock waves with tissues, and the accurate measurement and calculation of the mechanical parameters of shock waves in tissues are of great significance in formulating the therapeutic strategy and evaluating the therapeutic effect. This study utilizes the approach of implanting flexible polyvinylidene fluoride (PVDF) vibration sensors inside the tissue-mimicking phantom of various thicknesses to capture waveforms at different depths during the impact process in real time. Parameters including positive and negative pressure changes (P, P), pulse wave rise time ([Formula: see text]), and energy flux density (EFD) are calculated, and frequency spectrum analysis of the waveforms is conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!