A metabolically engineered Escherichia coli strain SBS550MG (pHL413) was used in this study to investigate the impact of various culture operating conditions for improving the specific succinate production rate for better final titer while maintaining the theoretical succinate yield on glucose in multiphase fed-batch cultures. Previously, we reported that changes in the level of aeration during the cell growth phase significantly modified gene expression profiles and metabolic fluxes in this system (Martinez et al. 2010). Based on these observations, the examination of culture conditions was mainly focused on the aerobic growth phase. It was found that 2-5 h of low dissolved oxygen culture during the aerobic phase improves cell productivity, but pH control during the aerobic phase was not favorable for the system. Cell viability has been identified as a major limiting factor for succinate production. Supplementing LB medium and betaine, an anti-osmotic stress reagent, did not improve cell activity. A higher succinate titer (537.8 mM) using the current metabolic engineering E. coli strain was achieved, which can potentially be improved further by increasing cell viability.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-011-3314-3DOI Listing

Publication Analysis

Top Keywords

succinate production
12
coli strain
12
culture operating
8
operating conditions
8
multiphase fed-batch
8
engineered escherichia
8
escherichia coli
8
growth phase
8
aerobic phase
8
cell viability
8

Similar Publications

Waterlogging is a significant stressor for crops, particularly in lowland regions where soil conditions exacerbate the problem. Waterlogged roots experience hypoxia, disrupting oxidative phosphorylation and triggering metabolic reorganization to sustain energy production. Here, we investigated the metabolic aspects that differentiate two soybean sister lines contrasting for waterlogging tolerance.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the potential relation between the retarded growth of skeletal muscle (SM) and dysbiosis of gut microbiota (GM) in children with asthma, and to explore the potential action mechanisms of traditional pediatric massage (TPM) from the perspective of regulating GM and short-chain fatty acids (SCFAs) production by using an adolescent rat model of asthma.

Methods: Male Sprague-Dawley rats aged 3weeks were divided randomly into the 5 groups (n=6~7) of control, ovalbumin (OVA), OVA + TPM, OVA + methylprednisolone sodium succinate (MP) and OVA + SCFAs. Pulmonary function (PF) was detected by whole body plethysmograph, including enhanced pause and minute ventilation.

View Article and Find Full Text PDF

In the context of organic farming, the introduction of a local product to wider markets and an evaluation of storage effects, metabolic and transcriptomic variations in two broccoli rabe genotypes from production cycles of two different years were studied by comparing florets of stored fresh (SF) and packaged (P) for 4 days with those harvested fresh from the field (H). Twenty-five hydrosoluble compounds, including amino acids, carbohydrates, and organic acids, were quantified by untargeted nuclear magnetic resonance (NMR). Principal component analysis produced a neat separation among the three commodity statuses with P being the most divergent and SF closer to H.

View Article and Find Full Text PDF

The role of Histidine buffer in the iron-catalyzed formation of oxidizing species in pharmaceutical formulations: mechanistic studies.

J Pharm Sci

January 2025

Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA. Electronic address:

Iron-catalyzed oxidation reactions are common degradation pathways in pharmaceutical formulations. Buffers can influence oxidation reactions promoted by iron (Fe) and hydrogen peroxide (H₂O₂). However, mechanistically, the specific role of buffers in such reactions is not well understood.

View Article and Find Full Text PDF

Acinetobacter baumannii is an opportunistic pathogen that is often studied in commonly used rich media in laboratories worldwide. Due to the metabolic versatility of A. baumannii, it can be cultured in different growth mediums; however, this can lead to genotypic and phenotypic variations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!