Kinetics of thermo-induced micelle-to-vesicle transitions in a catanionic surfactant system investigated by stopped-flow temperature jump.

Phys Chem Chem Phys

School of Materials and Chemical Engineering, Anhui Key Laboratory of Advanced Building Materials, Anhui University of Architecture, Hefei, Anhui 230022, China.

Published: July 2011

The kinetics of thermo-induced micelle-to-vesicle transitions in a catanionic surfactant system consisting of sodium dodecyl sulfate (SDS) and dodecyltriethylammonium bromide (DEAB) were investigated by the stopped-flow temperature jump technique, which can achieve T-jumps within ∼2-3 ms. SDS/DEAB aqueous mixtures ([SDS]/[DEAB] = 2/1, 10 mM) undergo microstructural transitions from cylindrical micelles to vesicles when heated above 33 °C. Upon T-jumps from 20 °C to final temperatures in the range of 25-31 °C, relaxation processes associated with negative amplitudes can be ascribed to the dilution-induced structural rearrangement of cylindrical micelles and to the dissolution of non-equilibrium mixed aggregates. In the final temperature range of 33-43 °C the obtained dynamic traces can be fitted by single exponential functions, revealing one relaxation time (τ) in the range of 82-440 s, which decreases with increasing temperature. This may be ascribed to the transformation of floppy bilayer structures into precursor vesicles followed by further growth into final equilibrium vesicles via the exchange and insertion/expulsion of surfactant monomers. In the final temperature range of 45-55 °C, vesicles are predominant. Here T-jump relaxations revealed a distinctly different kinetic behavior. All dynamic traces can only be fitted with double exponential functions, yielding two relaxation times (τ(1) and τ(2)), exhibiting a considerable decrease with increasing final temperatures. The fast process (τ(1)∼ 5.2-28.5 s) should be assigned to the formation of non-equilibrium precursor vesicles, and the slow process (τ(2)∼ 188-694 s) should be ascribed to their further growth into final equilibrium vesicles via the fusion/fission of precursor vesicles. In contrast, the reverse vesicle-to-micelle transition process induced by a negative T-jump from elevated temperatures to 20 °C occurs quite fast and almost completes within the stopped-flow dead time (∼2-3 ms).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0cp02856hDOI Listing

Publication Analysis

Top Keywords

precursor vesicles
12
kinetics thermo-induced
8
thermo-induced micelle-to-vesicle
8
micelle-to-vesicle transitions
8
transitions catanionic
8
catanionic surfactant
8
surfactant system
8
investigated stopped-flow
8
stopped-flow temperature
8
temperature jump
8

Similar Publications

Until recently, the lack of three-dimensional visualisation of whole cells at the electron microscopic (EM) level has led to a significant gap in our understanding of the interaction of cellular organelles and their interconnection. This is particularly true with regard to the role of the endoplasmic reticulum (ER). In this study, we perform three-dimensional reconstructions of serial FIB/SEM stacks and anaglyphs derived from volume rendering, cryo-scanning electron microscopy (cryo-SEM) and state-of-the-art electron microscopy immobilisation and imaging techniques.

View Article and Find Full Text PDF

This study describes the potential of the conditioned medium (CM) from adipose-derived mesenchymal stromal cells (ASCs) to affect the response of bone cells and support bone remodeling. This was in particular assessed by an in vitro model represented by a 3D human osteoblast-osteoclast co-culture. It has been reported that the effects of ASCs are predominantly attributable to the paracrine effects of their secreted factors, that are present as soluble factors or loaded into extracellular vesicles.

View Article and Find Full Text PDF

A microanatomical study of the precentral cerebral wall in human fetuses of the second trimester with ventriculomegaly and corpus callosal dysgenesis.

Clin Neurol Neurosurg

December 2024

Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India. Electronic address:

Background: The complex structure and function of the cerebrum make it a key focus in neuroscience research. It develops from telencephalic vesicles through processes such as cell growth, division, and migration from the neuroepithelium's ventricular matrix, forming the six-layered isocortex or neocortex. Multipotent neuroepithelial cells give rise to both neuronal and glial precursors, which populate the cerebral cortex.

View Article and Find Full Text PDF

Blood-derived APLP1 extracellular vesicles are potential biomarkers for the early diagnosis of brain diseases.

Sci Adv

January 2025

Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea.

Article Synopsis
  • Early detection of neurodegenerative diseases relies on identifying brain-specific biomolecules in blood, and this study explores amyloid precursor-like protein 1 (APLP1) as a new biomarker found in extracellular vesicles (EVs).
  • The research confirms that APLP1 EVs in human blood come from the brain, supported by distinct small RNA patterns and the expression of miRNA targets that are highly present in brain tissue.
  • Validation using special mouse models (Thy-1 GFP M line) alongside data analysis highlights APLP1 EVs' potential as both diagnostic markers and key players in advancing neurodegenerative disease diagnosis.
View Article and Find Full Text PDF

Sterol regulatory element binding proteins (SREBPs) are transcription factors that reside in the endoplasmic reticulum (ER) membrane as inactive precursors. To be active, SREBPs are translocated to the Golgi where the transcriptionally active N-terminus is cleaved and released to the nucleus to regulate gene expression. Nuclear SREBP levels can be determined by immunoblot analysis; however, this method can only determine the steady-state levels of nuclear SREBPs and does not capture the actual status of activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!