Phospholipid-dependent regulation of the motor activity of myosin X.

Nat Struct Mol Biol

Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA.

Published: June 2011

Myosin X is involved in the reorganization of the actin cytoskeleton and protrusion of filopodia. Here we studied the molecular mechanism by which bovine myosin X is regulated. The globular tail domain inhibited the motor activity of myosin X in a Ca(2+)-independent manner. Structural analysis revealed that myosin X is monomeric and that the band 4.1-ezrin-radixin-moesin (FERM) and pleckstrin homology (PH) domains bind to the head intramolecularly, forming an inhibited conformation. Binding of phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P(3)) to the PH domain reversed the tail-induced inhibition and induced the formation of myosin X dimers. Consistently, disruption of the binding of PtdIns(3,4,5)P(3) attenuated the translocation of myosin X to filopodial tips in cells. We propose the following mechanism: first, the tail inhibits the motor activity of myosin X by intramolecular head-tail interactions to form the folded conformation; second, phospholipid binding reverses the inhibition and disrupts the folded conformation, which induces dimer formation, thereby activating the mechanical and cargo transporter activity of myosin X.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nsmb.2065DOI Listing

Publication Analysis

Top Keywords

activity myosin
16
motor activity
12
myosin
9
folded conformation
8
phospholipid-dependent regulation
4
regulation motor
4
activity
4
myosin myosin
4
myosin involved
4
involved reorganization
4

Similar Publications

Protein phosphatase 2A (PP2A) plays a central role in myocardial ischemia-reperfusion (I/R) injury. Several studies showed a detrimental function of PP2A by using either overexpression models of the catalytic subunit (PP2Ac) or exogenous inhibitors of PP2Ac. However, all of these approaches underestimate the contribution of regulatory B subunits in modulating the PP2A holoenzyme.

View Article and Find Full Text PDF

Background: Pulmonary hypertension (PH) often leads to right ventricle (RV) failure, a significant cause of morbidity and mortality. Despite advancements in PH management, progression to RV maladaptation and subsequent failure remain a clinical challenge. This study explored the effect of paroxetine, a selective serotonin reuptake inhibitor (SSRI), on RV function in a rat model of PH, hypothesizing that it improves RV function by inhibiting G protein-coupled receptor kinase 2 (GRK2) and altering myofilament protein phosphorylation.

View Article and Find Full Text PDF

The calcium sensitivity hypothesis helps explain the development of different forms of cardiomyopathy: increased sensitivity to calcium in cardiac sarcomeres leads to hypertrophic cardiomyopathy (HCM) and decreased sensitivity results in dilated cardiomyopathy (DCM). This hypothesis has driven the development of next generation drugs targeting sarcomere proteins to correct the amount of force generated as a result of changes in calcium sensitivity ( mavacamten decreases cardiac myosin activity to treat HCM). Characterization of variants of cardiac actin (ACTC) found in patients with HCM or DCM has generally supported the calcium sensitivity hypothesis.

View Article and Find Full Text PDF

Myosin activator omecamtiv mecarbil exhibits divergent inotropic and lusitropic effects in cardiac slices from patients with heart failure.

J Mol Cell Cardiol Plus

September 2023

Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York City, NY 10461, USA.

View Article and Find Full Text PDF

Background: Cardiac pressure overload induces cardiac hypertrophy and eventually leads to heart failure. One distinct feature of pathological cardiac hypertrophy is fetal-gene re-expression, but not every cardiomyocyte exhibits fetal gene re-expression in the diseased heart. Adult cardiomyocytes are terminally differentiated cells, so we do not know how the heterogeneity is determined and whether the differential fetal-gene reprogramming indicates a different degree of remodeling among cardiomyocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!