Three experiments were conducted to determine the effects of increasing dietary standardized ileal digestible (SID) Lys on growing and finishing gilts. Diets in all 3 experiments were corn-soybean meal-based and contained 0.15% l-Lys•HCl and 3% added fat from choice white grease. Desired SID Lys concentrations were achieved by altering levels of corn and soybean meal in the diet. Each experiment consisted of 6 treatments with 7 pens per treatment and approximately 27 gilts (PIC 337 × 1050) per pen. In Exp. 1, 1,085 gilts (initially 38.2 kg) were fed diets formulated to contain SID Lys concentrations of 0.7, 0.8, 0.9, 1.0, 1.1, or 1.2% for 28 d, which were analyzed to be total Lys concentrations of 0.78, 0.86, 0.99, 1.06, 1.14, and 1.24%, respectively. As SID Lys increased, ADG and G:F improved (quadratic, P < 0.003) with optimal performance reached at the SID Lys level of 1.1% or SID Lys:ME ratio of 3.16 g/Mcal. Broken-line analysis indicated breakpoints of 1.03 and 1.05% SID Lys for ADG and G:F, respectively. Gilts in this trial required approximately 21.8 g of SID Lys intake per kilogram of BW gain from 38 to 65 kg. In Exp. 2, 1,092 (initially 55.2 kg) gilts were fed diets formulated to contain SID Lys concentrations of 0.66, 0.74, 0.82, 0.90, 0.98, or 1.06% for 28 d, which were analyzed to be total Lys concentrations of 0.75, 0.73, 0.84, 0.90, 0.95, and 0.97%, respectively. Both ADG (quadratic, P = 0.12) and G:F improved (linear, P < 0.001) as SID Lys increased, with broken-line analysis of ADG indicating a requirement estimate of 0.90%, which corresponds to a SID Lys:ME ratio of 2.58 g/Mcal. Gilts in this trial required approximately 19.6 g of SID Lys per kilogram of BW gain from 55 to 80 kg. In Exp. 3, 1,080 gilts (initially 84.1 kg) were fed diets formulated to contain SID Lys concentrations of 0.54, 0.61, 0.68, 0.75, 0.82, or 0.89% for 29 d, which were analyzed to be total Lys concentrations of 0.62, 0.92, 0.79, 0.99, 0.93, and 1.07%, respectively. As the SID Lys concentration increased, ADG and G:F improved (linear, P < 0.001), and performance responses were maximized at the greatest SID Lys level of 0.89% or SID Lys:ME ratio of 2.55 g/Mcal of ME. Gilts in this trial required 23.0 g of SID Lys per kg of BW gain from 85 to 110 kg. The ideal SID Lys:ME ratio was based on the requirement determined by broken-line analysis in Exp. 1, 2, and 3, with the greatest level being tested in Exp. 3. This equation, SID Lys:ME ratio = -0.011 × BW, kg + 3.617, estimates the optimal SID Lys:ME ratios for growth of gilts (PIC 337 × 1050) in this commercial finishing environment. These studies showed growth performance advantages to increasing SID Lys for growing and finishing gilts over previously reported optimal levels, particularly in the later finishing stages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2527/jas.2010-3030 | DOI Listing |
Poult Sci
December 2024
CBS Bio Platforms, Calgary, AB T2C 0J7, Canada.
A study was conducted to determine the effects of protease supplementation of field pea (in comparison with soybean meal; SBM) for broilers on apparent metabolizable energy (AMEn) and standardized ileal digestibility (SID) of amino acids (AA). One hundred and forty broiler chicks were divided into 35 groups of 4 birds/group and fed 5 diets in a completely randomized design (7 groups/diet) from 14 to 21 d of age. The diets were cornstarch-based containing SBM or field pea as the sole protein source without or with protease (ProSparity 250; CBS Bio Platforms, Calgary, AB, Canada) in 2 × 2 factorial arrangement, and N-free diet.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Animal Science, South Dakota State University, Brookings, SD 57006, USA.
Twenty-seven gestating primiparous sows (203 ± 9.1 kg initial body weight on d 89 ± 1 of gestation) were selected to determine the effect of standardized ileal digestible (SID) sulfur-containing amino acid (SAA) intake during late gestation on whole-body nitrogen (N) retention and subsequent litter performance. Primiparous sows were assigned to one of two experimental diets that provided SAAs at 63 or 200% of the estimated requirements during late gestation (0.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Département des Sciences Animales, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada.
This study evaluated the impact of precision feeding and bump feeding strategies during gestation on the reproductive performance of sows monitored over three cycles. Four treatments were compared: two constant-concentration feeding strategies (0.53% standardized ileal digestible lysine content; SID Lys) with the feed supply remaining constant (flat feeding; FF) or variable (bump feeding; BF) and two precision feeding strategies based on the InraPorc model considering performance by parity (precision feeding per parity; PFP) or the weight of each sow at breeding (precision feeding by individual; PFI).
View Article and Find Full Text PDFBr J Nutr
December 2024
Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan410128, People's Republic of China.
Tryptophan (Trp) is an essential amino acid acting as a key nutrition factor regulating animal growth and development. But how Trp modulates food intake in pigs is still not well known. Here, we investigated the effect of dietary supplementation of Trp with different levels on food intake of growing pigs.
View Article and Find Full Text PDFPoult Sci
November 2024
Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!