In many bacteria, including Staphylococcus aureus, progression from the logarithmic to the stationary phase is accompanied by conversion of most of bacterial membrane phosphatidylglycerol (PG) to cardiolipin (CL). Phagocytosis of S. aureus by human neutrophils also induces the conversion of most bacterial PG to CL. The genome of all sequenced strains of S. aureus contains two open reading frames (ORFs) predicting proteins encoded with ∼30% identity to the principal CL synthase (cls) of Escherichia coli. To test whether these ORFs (cls1 and cls2) encode cardiolipin synthases and contribute to CL accumulation in S. aureus, we expressed these proteins in a cls strain of E. coli and created isogenic single and double mutants in S. aureus. The expression of either Cls1 or Cls2 in CL-deficient E. coli resulted in CL accumulation in the stationary phase. S. aureus with deletion of both cls1 and cls2 showed no detectable CL accumulation in the stationary phase or after phagocytosis by neutrophils. CL accumulation in the stationary phase was due almost solely to Cls2, whereas both Cls1 and Cls2 contributed to CL accumulation following phagocytosis by neutrophils. Differences in the relative contributions of Cls1 and Cls2 to CL accumulation under different triggering conditions suggest differences in the role and regulation of these two enzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3147675PMC
http://dx.doi.org/10.1128/JB.00288-11DOI Listing

Publication Analysis

Top Keywords

stationary phase
20
cls1 cls2
20
accumulation stationary
12
staphylococcus aureus
8
cardiolipin synthases
8
conversion bacterial
8
phagocytosis neutrophils
8
aureus
7
accumulation
7
cls2
6

Similar Publications

Size exclusion chromatography-gradient (SEC-Gradient) is a powerful technique to separate polymers by their chemical composition. The stationary phase is first conditioned with a gradient from adsorli to desorli, and polymer samples are injected after the gradient in SEC conditions. Since its first description in 2011 by Schollenberger and Radke, it has never been applied to block copolymers.

View Article and Find Full Text PDF

Addressing the global challenge of ensuring access to safe drinking water, especially in developing countries, demands cost-effective, eco-friendly, and readily available technologies. The persistence, toxicity, and bioaccumulation potential of organic pollutants arising from various human activities pose substantial hurdles. While high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) is a widely utilized technique for identifying pollutants in water, the multitude of structures for a single elemental composition complicates structural identification.

View Article and Find Full Text PDF

Enantioseparation and enantiorecognition are crucial in the pharmaceutical analysis of chiral substances, impacting safety, efficacy, and regulatory compliance. Enantioseparation refers to the process of separating enantiomers from a mixture, typically achieved through chromatography techniques like HPLC and SFC. In contrast, enantiorecognition involves the identification of enantiomers based on their interaction with a chiral selector without the need for separation.

View Article and Find Full Text PDF

In this study, we extended a previously developed one-pot double derivatization reaction to establish the first routine isotope-coded multiplex derivatization for vitamin D and its metabolites for application in clinical environments, using commercial reagents, without the need for specialized reagents and advanced synthesis requirements. The original derivatization process consisted of using both a Cookson-type reagent and derivatization of hydroxyl groups. Initially, the analytes are derivatized by a Diels-Alder reaction using 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD), followed by acetylation using acetic anhydride, catalyzed by 4-dimethylaminopyridine at room temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!