PharmEcology: A pharmacological approach to understanding plant-herbivore interactions: an introduction to the symposium.

Integr Comp Biol

Department of Biological Sciences, Boise State University, 1910 University Dr, Boise, ID 83725, USA.

Published: September 2009

A central goal in understanding the ecology and evolution of animals is to identify factors that constrain or expand breadth of diet. Selection of diet in many animals is often constrained by chemical deterrents (i.e., secondary metabolites) in available food items. The integration of chemistry and ecology has led to a significant understanding of the chemical complexity of prey (e.g., animals, plants, and algae) and the resultant foraging behavior of consumers. However, most of the literature on chemical defenses of marine and terrestrial prey lacks a mechanistic understanding of how consumers tolerate, or avoid, chemically-defended foods. In order to understand ecological patterns of foraging and co-evolutionary relationships between prey and consumers, we must advance our understanding of the physiological mechanisms responsible for chemical interactions. Such mechanistic studies require the integration of the discipline of pharmacology with ecology, which we call "PharmEcology." Pharmacology provides the tools and insight to investigate the fate (what the body does to a chemical) and action (what a chemical does to the body) of chemicals in living organisms, whereas ecology provides the insight into the interactions between organisms (e.g., herbivores) and their environment (e.g., plants). Although, the general concepts of pharmacology were introduced to ecologists studying plant-herbivore interactions over 30 years ago, the empirical use of pharmacology to understand mechanisms of chemical interactions has remained limited. Moreover, many of the recent biochemical, molecular and technical advances in pharmacology have yet to be utilized by ecologists. The PharmEcology symposium held at a meeting of the Society for Integrative and Comparative Biology in January of 2009 was developed to define novel research directions at the interface of pharmacology and ecology.

Download full-text PDF

Source
http://dx.doi.org/10.1093/icb/icp020DOI Listing

Publication Analysis

Top Keywords

plant-herbivore interactions
8
chemical interactions
8
pharmacology ecology
8
chemical
7
pharmacology
6
understanding
5
interactions
5
ecology
5
pharmecology pharmacological
4
pharmacological approach
4

Similar Publications

Different thermal regimes and susceptibility to herbivory do not constrain seagrass seedling restoration.

Mar Environ Res

December 2024

University of Sassari, Department of Chemical, Physical, Mathematical and Natural Sciences, Sassari, Italy; National Biodiversity Future Centre, Palermo, Italy.

Recovering seagrass ecosystems through restoration has become impellent to re-establish their functionality and services. Although the use of seedlings may represent an appropriate solution, little information is provided on the seedling-based restoration effectiveness with influence of biotic and abiotic interactions. Survival, morphological development and leaf total phenol content of transplanted Posidonia oceanica seedlings were evaluated under different origin, thermal regimes and herbivore pressure through a five-months field experiment in two MPAs, located on the west (cold) and east (warm) Sardinia coast to explore the effectiveness of seedling-based restoration.

View Article and Find Full Text PDF

AbstractInducible defenses can affect the persistence, structure, and stability of consumer-resource systems. Theory shows that these effects depend on characteristics of the inducible defense, including timing, costs, efficacy, and sensitivity to consumer density. However, the expression and costs of inducible defenses often vary among life stages, which has not been captured in previous unstructured models.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungus and Pseudomonas bacteria affect tomato response to Tuta absoluta (Lepidoptera: Gelechiidae) herbivory.

BMC Plant Biol

December 2024

State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China.

Tuta absoluta (Lepidoptera: Gelechiidae) is one of the most significant invasive and destructive pests worldwide, causing serious economic losses to the tomato industry. Rhizosphere microorganism, such as arbuscular mycorrhizal fungi (AMF) and Pseudomonas bacteria, can interact with plants individually or collectively to improve plant growth and resistance to pests and disease. However, the effects of AMF, Pseudomonas, and their interactions on plant responses to insect herbivores remain unclear.

View Article and Find Full Text PDF

(1) Background: Genistein is a naturally occurring flavonoid with a rich spectrum of biological activities, including plant-herbivore interactions. The aim of the study was to evaluate the effect of exogenous application of genistein on aphid behavior during probing in plant tissues. (2) Methods: , ssp.

View Article and Find Full Text PDF

Microplastics and Nanoplastics Alter the Physicochemical Properties of Willow Trees and Lead to Mortality in Leaf Beetle Larvae.

Plant Cell Environ

December 2024

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.

Polystyrene micro- and nanoplastics (MNPs) are increasingly found in terrestrial environments, posing risks across the food web. However, the potential impacts of MNPs transfer on plant-insect interactions remains largely unknown. In this study, consumption of willow plants (Salix maizhokunggarensis) exposed to 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!