Studies of the spin-Hamiltonian parameters and defect structures for Gd3+ ions in zircon-structure silicates MSiO4 (M=Zr, Hf, Th).

Spectrochim Acta A Mol Biomol Spectrosc

Department of Material Science, Sichuan University, Chengdu 610064, People's Republic of China.

Published: September 2011

The spin-Hamiltonian parameters (g factors g∥, g⊥ and zero-field splittings b2(0), b4(0), b4(4), b6(0), b6(4)) for 4f7 ion Gd3+ at the tetragonal M4+ site of zircon-structure silicates MSiO4 (M=Zr, Hf, Th) are calculated from a diagonalization (of energy matrix) method. The Hamiltonian concerning this energy matrix contains the free-ion, crystal-field interaction and Zeeman interaction terms and the 56×56 energy matrix is constructed by considering the ground multiplet 8S7/2 and the excited multiplets 6L7/2 (L=P, D, F, G, H, I). The defect structures of Gd3+ centers in the three MSiO4 crystals are yielded from the calculation. The results are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2011.04.057DOI Listing

Publication Analysis

Top Keywords

energy matrix
12
spin-hamiltonian parameters
8
defect structures
8
structures gd3+
8
zircon-structure silicates
8
silicates msio4
8
msio4 m=zr
8
studies spin-hamiltonian
4
parameters defect
4
gd3+ ions
4

Similar Publications

Nonadiabatic Quantum Dynamics of Molecules Scattering from Metal Surfaces.

J Chem Theory Comput

January 2025

Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany.

Nonadiabatic coupling between electrons and molecular motion at metal surfaces leads to energy dissipation and dynamic steering effects during chemical surface dynamics. We present a theoretical approach to the scattering of molecules from metal surfaces that incorporates all nonadiabatic and quantum nuclear effects due to the coupling of the molecular degrees of freedom to the electrons in the metal. This is achieved with the hierarchical equations of motion (HEOM) approach, combined with a matrix product state representation in twin space.

View Article and Find Full Text PDF

Aromatic ring compounds with different conjugation degrees in a boronic acid matrix to realize multicolor phosphorescence for time division colorful multiplexing.

Nanoscale

January 2025

Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China.

Long lifetime multicolor phosphorescence materials possess excellent optical properties and have important application prospects in the fields of advanced anti-counterfeiting and information encryption. However, realizing long lifetime and color-tunable room temperature phosphorescent (RTP) carbon dot (CD) materials has proved challenging. In this study, the organic precursor molecules 2-phenethylamine (2-Ph), 9-aminophenanthrene (9-Ph) and 1-aminopyrene (1-Py) with different degrees of conjugation were selected to synthesize RTP CD composites: 2-Ph@BA, 9-Ph@BA and 1-Py@BA were synthesized by mixing with a boric acid (BA) matrix under high temperature pyrolysis.

View Article and Find Full Text PDF

Influence of matrix stiffness on microstructure evolution and magnetization of magneto-active elastomers.

Soft Matter

January 2025

Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, Dresden, 01069, Germany.

Field-induced microstructure evolution can play an important role in defining the coupled magneto-mechanical response of Magneto-Active Elastomers (MAEs). The behavior of these materials is classically modeled using mechanical, magnetic and coupled magneto-mechanical contributions to their free energy function. If the MAE sample is fully clamped so it cannot deform, the mechanical coupling is reduced to the internal microscopic deformations caused by the particles moving and deforming the elastic medium that surrounds them.

View Article and Find Full Text PDF

Switchable order parameters in ferroic materials are essential for functional electronic devices, yet disruptions of the ordering can take the form of planar boundaries or defects that exhibit distinct properties from the bulk, such as electrical (polar) or magnetic (spin) response. Characterizing the structure of these boundaries is challenging due to their confined size and three-dimensional (3D) nature. Here, a chemical antiphase boundary in the highly ordered double perovskite PbMgWO is investigated using multislice electron ptychography.

View Article and Find Full Text PDF

The failure of locked-segment landslides is associated with the destruction of locked segments that exhibit an energy accumulation effect. Thus, understanding their failure mode and instability mechanism for landslide hazard prevention and control is critical. In this paper, multiple instruments, such as tilt sensors, pore water pressure gauges, moisture sensors, matrix suction sensors, resistance strain gauges, miniature earth pressure sensors, a three-dimensional (3D) laser scanner, and a camera, were used to conduct the physical model tests on the rainfall-induced arch locked-segment landslide to analyze the resulting tilting deformation and evolution mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!