Recent work in zebra finches suggests that genes and hormones may act together to masculinize the brain. This study tested the effects of exogenous estradiol (E2) on 17β-hydroxysteroid dehydrogenase type IV (HSD17B4) and the co-localization of HSD17B4 and androgen receptor (AR) mRNA. We asked three primary questions: First, how does post-hatching E2 treatment affect HSD17B4 mRNA expression in males and females? Second, is this gene expressed in the same cells as AR. Third, if so does E2 modulate co-expression? Female finches implanted with 50 μg of E2 on the third day post-hatching showed a significant increase in the density of cells expressing HSD17B4 and AR in HVC at day 25. Co-localization of AR cells that also expressed HSD17B4 was high across groups (>81%). We found significant sex differences in co-localization in both the HVC and Area X of control animals, with males showing a higher percentage of cells expressing AR mRNA that also expressed HSD17B4 in comparison to females. However, although E2 treatments significantly increased the number of cells expressing HSD17B4 mRNA and AR mRNA in the HVC of females, the percentage of HSD17B4 cells co-expressing AR was reduced in HVC and Area X in E2-treated animals. These results lend support to the hypothesis that genes and hormones may act in concert to modulate the sexually differentiation of the zebra finch song system. Further, the data suggest that a single hormonal mechanism cannot mimic the complex development of male singing behavior and associated song nuclei.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148821 | PMC |
http://dx.doi.org/10.1016/j.brainres.2011.05.031 | DOI Listing |
Exp Hematol Oncol
January 2025
Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
Background: Closed head injury (CHI) provokes a prominent neuroinflammation that may lead to long-term health consequences. Microglia plays pivotal and complex roles in neuroinflammation-mediated neuronal insult and repair following CHI. We previously reported that induced neural stem cells (iNSCs) can block the effects of CXCL12/CXCR4 signaling on NF-κB activation in activated microglia by CXCR4 overexpression.
View Article and Find Full Text PDFCell Div
January 2025
Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Background: Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy.
The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
January 2025
Yanzhou District People's Hospital, Jining, Shandong, China.
Background: Osteoporosis (OP), often termed the "silent epidemic," poses a substantial public health burden. Emerging insights into the molecular functions of FBXW4 have spurred interest in its potential roles across various diseases.
Methods: This study explored FBXW4 by integrating DEGs from GEO datasets GSE2208, GSE7158, GSE56815, and GSE35956 with immune-related gene compilations from the ImmPort repository.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!