The synthesis of different series of 4- and 6-substituted R/S-3,4-dihydro-2,2-dimethyl-2H-1-benzopyrans is described. All of these new benzopyran derivatives were bearing, at the 4-position, a phenylthiourea moiety substituted on the phenyl ring by a meta or a para-electron-withdrawing group such as Cl or CN. The study aimed at exploring the influence of the nature of the substituent at the 6-position in order to develop new benzopyran-type K(ATP) channel activators exhibiting an improved selectivity towards the insulin secreting cells. The original compounds were examined in vitro on rat pancreatic islets (inhibition of insulin release) as well as on rat aorta rings (vasorelaxant effect) and their activity was compared to that of the reference K(ATP) channel activators (±)-cromakalim, (±)-pinacidil, diazoxide and to previously synthesized cromakalim analogues. Structure-activity relationships indicated that the inhibitory effect on the insulin secreting cells was related to the lipophilicity of the molecules and to the size of the substituent located at the 6-position. A marked inhibitory activity on the insulin secretory process was obtained with molecules bearing a bulky tert-butyloxycarbonylamino group at the 6-position (20-23). The latter compounds were found to have the same efficacy on the pancreatic endocrine tissue than some previously described molecules. Lastly, radioisotopic experiments further identified R/S-N-4-chlorophenyl-N'-(6-tert-butyloxycarbonylamino-3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-4-yl)thiourea (23) as a K(ATP) channel opener.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2011.05.040DOI Listing

Publication Analysis

Top Keywords

katp channel
12
benzopyran derivatives
8
channel activators
8
insulin secreting
8
secreting cells
8
insulin
5
modulation 6-position
4
6-position benzopyran
4
derivatives inhibitory
4
inhibitory effects
4

Similar Publications

Delayed radiation-induced brain injury (RIBI) characterized by progressive cognitive decline significantly impacts patient outcomes after radiotherapy. The activation of NLRP3 inflammasome within microglia after brain radiation is involved in the progression of RIBI by mediating inflammatory responses. We have previously shown that sulfonylurea receptor 1-transient receptor potential M4 (SUR1-TRPM4) mediates microglial NLRP3-related inflammation following global brain ischemia.

View Article and Find Full Text PDF

Analyzing the genetic architecture of hereditary forms of diabetes in different populations is a critical step toward optimizing diagnostic and preventive algorithms. This requires consideration of regional and population-specific characteristics, including the spectrum and frequency of pathogenic variants in targeted genes. As part of this study, we used a custom-designed NGS panel to screen for mutations in 28 genes associated with the pathogenesis of hereditary diabetes mellitus in 506 unrelated patients from Russia.

View Article and Find Full Text PDF

Low-dose quinine targets KCNH6 to potentiate glucose-induced insulin secretion.

J Mol Cell Biol

January 2025

Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of ATP-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets.

View Article and Find Full Text PDF

Purinergic inhibitory regulation of esophageal smooth muscle is mediated by P2Y receptors and ATP-dependent potassium channels in rats.

J Physiol Sci

January 2025

Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Department of Basic Veterinary Science, Laboratory of Physiology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study, 1-1 Yanagido, 501-1193, Gifu, Japan.

Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer.

View Article and Find Full Text PDF

Regional blood flow within the brain is tightly coupled to regional neuronal activity, a process known as neurovascular coupling (NVC). In this study, we demonstrate the striking role of SUR2- and Kir6.1-dependent ATP-sensitive potassium (K) channels in control of NVC in the sensory cortex of conscious mice, in response to mechanical stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!