Here we describe a methodological approach for the simultaneous electroencephalographic (EEG) recording in musicians playing in ensemble. Four professional saxophonists wore pre-wired EEG caps (30 electrodes placed according to an augmented 10-20 system; cephalic reference and ground). Each cap was connected to a single multi-channel amplifier box [Brain Explorer (BE), EB-Neuro(©)]. The four boxes converged to a single workstation equipped with a software (GALILEO NT, EB-Neuro(©)) allowing the simultaneous recording of sounds, digital trigger, and EEG-electrooculographic (EOG)-electromyographic (EMG) data, and providing a separate output file for each individual. Noteworthy, the subjects were electrically decoupled to satisfy international safety guidelines. The quality of the EEG data was confirmed by the rate of artifact-free EEG epochs (about 80%) and by EEG spectral features. During the resting state, dominant EEG power density values were observed at alpha band (8-12Hz) in posterior cortex. The quality of EMG can be used to identify "on" and "off" states of the musicians' motor performance, thus potentially allowing the investigation of the relationships between EEG dynamics and different characteristics of the specific performance. During the music performance, alpha power density values decreased in amplitude in several cortical regions, whereas power density values enhanced within narrow high-frequency bands. In conclusion, the present methodological approach appeared to be suitable for simultaneous EEG recordings in musicians playing in ensemble.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cortex.2011.05.006DOI Listing

Publication Analysis

Top Keywords

musicians playing
12
playing ensemble
12
power density
12
density values
12
simultaneous recording
8
methodological approach
8
eeg
8
simultaneous
4
recording electroencephalographic
4
electroencephalographic data
4

Similar Publications

Creativity and style in music playing originates from constraints and imperfect interactions between instruments and players. Digital and robotic systems have so far been unable to capture this naturalistic playing. Whether as an additional tool for musicians, function restoration with prosthetics, or artificial intelligence-powered systems, the physical embodiment and interactions generated are critical for expression and connection with an audience.

View Article and Find Full Text PDF

Hearing health, a cornerstone for musical performance and appreciation, often stands at odds with the unique acoustical challenges that musicians face. Utilizing a cross-sectional design, this survey-based study presents an in-depth examination of self-rated hearing health and its contributing factors in 370 professional and 401 amateur musicians recruited from German-speaking orchestras. To probe the nuanced differences between these groups, a balanced subsample of 200 professionals and 200 amateurs was curated, matched based on age, gender, and instrument family.

View Article and Find Full Text PDF

Musician's dystonia (MD) is a movement disorder characterized by involuntary muscle contractions specifically triggered by playing an instrument. This condition often leads to a loss of fine motor control, threatening the careers of affected musicians. While MD is commonly associated with the hands, it can also affect the lower limbs, particularly in drummers.

View Article and Find Full Text PDF

Background: Young musicians starting their professional education are particularly vulnerable to playing-related musculoskeletal disorders (PRMDs). In the context of research on PRMDs, physical and psychological associated factors are frequently highlighted without investigating their complex interrelationships. The objective of this exploratory study was to examine the associations between lifestyle, music practice habits, physical and psychological variables, and PRMDs in student musicians.

View Article and Find Full Text PDF

In music ensemble performance, perception-action coupling enables the processing of auditory feedback from oneself and other players. However, improvised actions may affect this coupling differently from predetermined actions. This study used two-person EEG to examine how pianists responded to altered pitch feedback to their own or their partner's actions while they alternated scores or improvised melodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!