Diphtheria toxin has been well characterized in terms of its receptor binding and receptor mediated endocytosis. However, the precise mechanism of the cytosolic release of diphtheria toxin fragment A from early endosomes is still unclear. Various reports differ regarding the requirement for cytosolic factors in this process. Here, we present data indicating that the distribution of actin filaments due to cytochalasin D action enhances the retention of diphtheria toxin in early endosomes. Treating cells with cytochalasin D reduces the cytosolic fragment A activity and leads to changes in the intracellular distribution and size of early endosomes with toxin cargo. F-actin and eukaryotic elongation factor 2 can promote fragment A release from toxin-loaded early endosomes in an in vitro translocation system. Moreover, these proteins bind to toxin-loaded early endosomes in vitro and promote each other's binding. They are thus thought to be involved in the cytosolic release of fragment A. Finally, ADP-ribosylation of eukaryotic elongation factor 2 is shown to inhibit fragment A release and, via a feed-back mechanism, to account for the minute amounts of fragment A normally found in the cytosol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2011.05.017DOI Listing

Publication Analysis

Top Keywords

early endosomes
20
diphtheria toxin
16
fragment release
12
eukaryotic elongation
12
elongation factor
12
toxin fragment
8
actin filaments
8
cytosolic release
8
toxin-loaded early
8
endosomes vitro
8

Similar Publications

Acidic pH of Early Endosomes Governs SARS-CoV-2 Transport in Host Cells.

J Biol Chem

December 2024

Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, USA. Electronic address:

Endocytosis is a prominent mechanism for SARS-CoV-2 entry into host cells. Upon internalization into early endosomes (EEs), the virus is transported to late endosomes (LEs), where acidic conditions facilitate spike protein processing and viral genome release. Dynein and kinesin motors drive EE transport along microtubules; dynein moves EEs to the perinuclear region, while kinesins direct them towards the plasma membrane, creating a tug-of-war over the direction of transport.

View Article and Find Full Text PDF

TAT-1, a phosphatidylserine flippase, affects molting and regulates membrane trafficking in the epidermis of C. elegans.

Genetics

December 2024

Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming 82071.

Membrane trafficking is a conserved process required for import, export, movement, and distribution of proteins and other macromolecules within cells. The Caenorhabditis elegans NIMA-related kinases NEKL-2 (human NEK8/9) and NEKL-3 (human NEK6/7) are conserved regulators of membrane trafficking and are required for the completion of molting. Using a genetic approach we identified reduction-of-function mutations in tat-1 that suppress nekl-associated molting defects.

View Article and Find Full Text PDF

The microtubule motor cytoplasmic dynein-1 transports and positions various organelles, but the molecular basis of this functional diversity is not fully understood. Cargo adaptors of the Hook protein family recruit dynein to early endosomes (EE) in fungi and human cells by forming the FTS-Hook-FHIP (FHF) complex. By contrast, the Hook homolog ZYG-12 recruits dynein to the nuclear envelope (NE) in the meiotic gonad and mitotic early embryo by forming a Linker of Nucleoskeleton and Cytoskeleton (LINC) complex.

View Article and Find Full Text PDF

Background: Observational studies have shown that hypothyroidism is strongly associated with adverse pregnancy outcomes, and that thyroxine during pregnancy comes mainly from the mother; therefore, thyroid defects in women may lead to problems such as miscarriage due to hormonal instability in early pregnancy, and foetal neurological deficits in mid- to late gestation, but whether there is a genetic causality between the two is still a matter of some controversy.

Objective: Goal to investigate the possible causal association between hypothyroidism and unfavorable pregnancy outcomes through the use of bioinformatics and Mendelian randomization (MR).

Methods: We used Mendelian randomization (MR) analyses using single nucleotide polymorphism (SNP) sites as instrumental variables to infer causal associations between exposures and outcomes.

View Article and Find Full Text PDF

Temporal dissection of the roles of Atg4 and ESCRT in autophagosome formation in yeast.

Cell Death Differ

December 2024

State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China.

Autophagosomes are formed by the enlargement and sealing of phagophores. This is accompanied by the recruitment and release of autophagy-related (Atg) proteins that function therein. Presently, the relationship among factors that act after the initial emergence of the phagophore is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!