Effects of mitochondrial mutations on hearing and cochlear pathology with age.

Hear Res

Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0666, USA.

Published: October 2011

Age-related hearing loss is a multi-factorial process involving genetic and environmental factors, including exposure to noise and ototoxic agents, as well as pathological processes. Among these is the accumulation of mitochondrial DNA mutations and deletions. The creation of a transgenic mouse with a loss-of-function deletion of the nuclear gene that encodes the polymerase required to repair damaged mitochondrial DNA (PolgA) enabled evaluation of age-related cochlear pathology associated with random mitochondrial DNA deletions that accrue over the lifespan of the mouse. In comparison with their wild-type or heterozygous counterparts, animals with mutated DNA polymerase gamma developed hearing loss most rapidly. Any loss of mitochondrial DNA polymerase function however, resulted in detrimental effects, as evidenced by hearing tests and histological investigation of transgenic heterozygotes. Cochlear pathology in transgenic animals at 10 months of age included loss of neurons and clumping of surviving neurons in the apical turn of the spiral ganglion. Mitochondrial mutations in young animals, on the other hand, were protective against the development of temporary threshold shift in response to relatively low level noise exposure. This supports the idea that temporary threshold shifts are the result of an active process involving mitochondria and respiratory chain activity. Our results indicate that mitochondrial mutation and deletion can certainly contribute to the development of an aging phenotype, specifically age-related hearing loss.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.heares.2011.05.015DOI Listing

Publication Analysis

Top Keywords

mitochondrial dna
16
cochlear pathology
12
hearing loss
12
mitochondrial mutations
8
age-related hearing
8
process involving
8
dna polymerase
8
temporary threshold
8
mitochondrial
6
hearing
5

Similar Publications

Diagnosis of hereditary ataxias: a real-world single center experience.

J Neurol

January 2025

Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.

Objective: This study aims to evaluate our experience in the diagnosis of hereditary ataxias (HAs), to analyze data from a real-world scenario.

Study Design: This is a retrospective, cross-sectional, descriptive study conducted at a single Italian adult neurogenetic outpatient clinic, in 147 patients affected by ataxia with a suspicion of hereditary forms, recruited from November 1999 to February 2024. A stepwise approach for molecular diagnostics was applied: targeted gene panel (TP) next-generation sequencing (NGS) and/or clinical exome sequencing (CES) were performed in the case of inconclusive first-line genetic testing, such as short tandem repeat expansions (TREs) testing for most common spinocerebellar ataxias (SCA1-3, 6-8,12,17, DRPLA), other forms [Fragile X-associated tremor/ataxia syndrome (FXTAS), Friedreich ataxia (FRDA) and mitochondrial DNA-related ataxia, RFC1-related ataxia/CANVAS] or inconclusive phenotype-guided specific single gene sequencing.

View Article and Find Full Text PDF

An Injectable Multifunctional Nanosweeper Eliminates Cardiac Mitochondrial DNA to Reduce Inflammation.

Adv Healthc Mater

January 2025

Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.

Myocarditis, a leading cause of sudden cardiac death and heart transplantation, poses significant treatment challenges. The study of clinical samples from myocarditis patients reveals a correlation between the pathogenesis of myocarditis and cardiomyocyte mitochondrial DNA (mtDNA). During inflammation, the concentration of mtDNA in cardiomyocytes increases.

View Article and Find Full Text PDF

ZFAND6 is a zinc finger protein that interacts with TNF receptor-associated factor 2 (TRAF2) and polyubiquitin chains and has been linked to tumor necrosis factor (TNF) signaling. Here, we report a previously undescribed function of ZFAND6 in maintaining mitochondrial homeostasis by promoting mitophagy. Deletion of ZFAND6 in bone marrow-derived macrophages (BMDMs) upregulates reactive oxygen species (ROS) and the accumulation of damaged mitochondria due to impaired mitophagy.

View Article and Find Full Text PDF

Diabetic retinopathy, a microvascular complication of diabetes, is the leading cause of blindness in adults, but the molecular mechanism of its development remains unclear. Retinal mitochondrial DNA is damaged and hypermethylated, and mtDNA-encoded genes are downregulated. Expression of a long noncoding RNA (larger than 200 nucleotides, which does not translate into proteins), encoded by mtDNA, cytochrome B (Lnc), is also downregulated.

View Article and Find Full Text PDF

The complete mitochondrial genome of Ratzeburg (Hymenoptera: ichneumonidae: pimplinae).

Mitochondrial DNA B Resour

January 2025

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China.

The genomic-level characteristics play a pivotal role as genetic assets for the identification of species and phylogenetic analysis. Here, we sequenced and analyzed the mitochondrial genome of (Ratzeburg), which was first morphologically described in "Die Ichneumonen der Forstinsecten in forstlicher und entomologischer Beziehung." The motivation for this research arises from the necessity to comprehend the genetic composition and evolutionary history of , a genus of parasitic wasps with potential agricultural significance, which.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!