Identification of various laccases induced by anthracene and contribution to its degradation in a Mediterranean coastal pine litter.

Chemosphere

Equipe Ecologie Microbienne et Biotechnologies, UMR CNRS IRD 6116, Institut Méditerranéen d'Ecologie et de Paléoécologie, Faculté des Sciences et Techniques de St. Jérôme, Université Paul Cézanne, 13397 Marseille, France.

Published: September 2011

Mediterranean coastal ecosystems are known to be highly subject to natural and anthropic environmental stress. In this study, we examine the effects of anthracene as a common pollutant on the total microbial communities from a Pinus halepensis litter of a typical Mediterranean coastal site (Les Calanques, Marseille). The main objective was to identify the microbial factors leading the resilience of this ecosystem. Two questions were addressed: (i) how lignin-degrading enzymes (Laccase, Lignin-peroxidase and Mn-peroxidase) are affected by the presence of this molecule, (ii) whether the indigenous consortia are involved in its degradation in mesocosms under favorable incubation conditions (25 °C, 60% WHC) and after different time intervals (1 and 3 month(s)). We found a strong increase in laccase production in the presence of anthracene after 3 months, together with anthracene degradation (28%±5). Moreover 9,10-anthraquinone is detected as the product of anthracene oxidation after 3 months. However neither lignin-peroxidase activity nor Mn-peroxidase activity is detected. Laccase proteins directly extracted from litter were sequenced via Nano-LC-MS/MS and reveal twelve different peptide sequences induced by the presence of anthracene in the mesocoms. Our study confirms the major detoxification role of this enzymatic system and highlights the high degradation potential of fungal species inhabiting P. halepensis litter, a factor in the resilience of Mediterranean ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2011.05.021DOI Listing

Publication Analysis

Top Keywords

mediterranean coastal
12
halepensis litter
8
presence anthracene
8
anthracene
6
identification laccases
4
laccases induced
4
induced anthracene
4
anthracene contribution
4
degradation
4
contribution degradation
4

Similar Publications

We conducted surveys of Mediterranean beaches in Egypt, Morocco, and Tunisia including 37 macro-litter (> 25 mm) and 41 meso-litter (5-25 mm) assessments. Our study identified key litter items and assessed pollution sources on urban, semi-urban, tourist, and semi-rural beaches. Macro-litter concentration averaged 5032 ± 4919 pieces per 100 m or 1.

View Article and Find Full Text PDF

Water temperature is a vital parameter impacting the growth and survival of aquatic life. Using satellite-derived infrared data, this study analysed the trend of sea surface temperature (SST) from 2008 to 2022 of the Adriatic coastal waters of Italian regions. The "Mediterranean Sea High Resolution and Ultra High Resolution Sea Surface Temperature Analysis" product collected from the Copernicus Marine Service of European Copernicus programme was used, as a good compromise among spatial accuracy, temporal frequency and coverage.

View Article and Find Full Text PDF

On the effectiveness of the red alga Laurencia microcladia as a PAH biomonitor in coastal marine ecosystems.

Environ Sci Pollut Res Int

December 2024

Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.

Anthropogenic pressures affect large stretches of Mediterranean coastal environments, determining alterations, including chemical pollution, able to impair ecosystem functioning and services. Among the pollutants of major concern for their toxicity and persistence, there are polycyclic aromatic hydrocarbons (PAHs), which can be effectively monitored through bioaccumulation approaches. However, the main biomonitor of PAHs in the Mediterranean Sea, Posidonia oceanica, is currently undergoing extensive regressions due to anthropogenic pressures, forcing the search for alternative biomonitors.

View Article and Find Full Text PDF

Chemical Diversity of Mediterranean Seagrasses Volatilome.

Metabolites

December 2024

CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France.

Background/objectives: Biogenic volatile organic compounds (BVOCs), extensively studied in terrestrial plants with global emissions around 1 PgC yr, are also produced by marine organisms. However, benthic species, especially seagrasses, are understudied despite their global distribution (177,000-600,000 km). This study aims to examine BVOC emissions from key Mediterranean seagrass species (, , , and ) in marine and coastal lagoon environments.

View Article and Find Full Text PDF

Different impact of a severe storm on two gorgonian species.

Mar Environ Res

December 2024

Seascape Ecology Lab (SEL), DiSTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genova, Italy; NBFC (National Biodiversity Future Centre), Piazza Marina 61, 90133, Palermo, Italy.

Extreme events influence ecosystem dynamics, but their effects on coastal marine habitats are often poorly perceived compared to their terrestrial counterparts. The detailed study of changes in benthic communities related to these phenomena is becoming urgent, due to the increasing intensity and frequency of hurricanes recorded in recent decades. Slow-growing benthic sessile organisms are particularly vulnerable to mechanical impacts, especially the large long-lived species with branched morphology that structure Mediterranean coralligenous assemblages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!