Since electro-oculographic (EOG) activity during human sleep appears to be of medical diagnostic and prognostic value, the vast amount of EOG data representative of even a single night's sleep warrants the development of automated pattern recognition and information extraction techniques. Such a technique for the analysis of sleep EOG rapid eye movement (REM) is presented in which the time of occurrence, area, height, duration and binocular symphrony for each REM are measured. This automated technique for sleep EOG analysis is currently used in the investigation of periodicities and values of REM parameters for normal subjects and in the differential diagnosis of affective disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0020-7101(78)90048-x | DOI Listing |
Comput Methods Biomech Biomed Engin
January 2025
School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, Changzhou University, Changzhou, P.R. China.
Slow eye movements (SEMs) are a reliable physiological marker of drivers' sleep onset, often accompanied by EEG alpha wave attenuation. A parallel multimodal 1D convolutional neural network (PM-1D-CNN) model is proposed to classify SEMs. The model uses two parallel 1D-CNN blocks to extract features from EOG and EEG signals, which are then fused and fed into fully connected layers for classification.
View Article and Find Full Text PDFJ Neurosci Methods
January 2025
School of Electrical and Computer Engineering, Gallogly College of Engineering, University of Oklahoma, Norman, OK 73019, USA.
Background: Recent advances in multimodal signal analysis enable the identification of subtle drug-induced anomalies in sleep that traditional methods often miss.
New Method: We develop and introduce the Dynamic Representation of Multimodal Activity and Markov States (DREAMS) framework, which embeds explainable artificial intelligence (XAI) techniques to model hidden state transitions during sleep using tensorized EEG, EMG, and EOG signals from 22 subjects across three age groups (18-29, 30-49, and 50-66 years). By combining Tucker decomposition with probabilistic Hidden Markov Modeling, we quantified age-specific, temazepam-induced hidden states and significant differences in transition probabilities.
Physiol Meas
January 2025
Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg 10 postbus 2440 3001 LEUVEN Belgium, Leuven, Flanders, 3000, BELGIUM.
Sleep staging is a crucial task in clinical and research contexts for diagnosing and understanding sleep disorders. This work introduces PhysioEx, a Python library designed to support the analysis of sleep stages using deep learning and Explainable AI (XAI). Approach: PhysioEx provides an extensible and modular API for standardizing and automating the sleep staging pipeline, covering data preprocessing, model training, testing, fine-tuning, and explainability.
View Article and Find Full Text PDFBrain Sci
November 2024
Department of Neurology, Beth Isreal Deaconess Medical Center, Harvard Medical School, Harvard University, Cambridge, MA 02215, USA.
: Manually labeling sleep stages is time-consuming and labor-intensive, making automatic sleep staging methods crucial for practical sleep monitoring. While both single- and multi-channel data are commonly used in automatic sleep staging, limited research has adequately investigated the differences in their effectiveness. In this study, four public data sets-Sleep-SC, APPLES, SHHS1, and MrOS1-are utilized, and an advanced hybrid attention neural network composed of a multi-branch convolutional neural network and the multi-head attention mechanism is employed for automatic sleep staging.
View Article and Find Full Text PDFFront Comput Neurosci
December 2024
School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!