The dynamics of vibrational energy relaxation (VER) of the aqueous azide anion was studied over a wide temperature (300 K ≤ T ≤ 663 K) and density (0.6 g cm(-3) ≤ ρ ≤ 1.0 g cm(-3)) range thereby covering the liquid and the supercritical phase of the water solvent. Femtosecond mid-infrared spectroscopy on the ν(3) band associated with the asymmetric stretching vibration of the azide anion was used to monitor the relaxation dynamics in a time-resolved fashion. The variation of the vibrational relaxation rate constant with temperature and density was found to be rather small. Surprisingly, the simple isolated binary collision model is able to fully reproduce the experimentally observed temperature and density dependence of the relaxation rate provided a local density correction around the vibrationally excited solute based on classical molecular dynamics simulations is used. The simulations further suggest that head-on collisions of the solvent with the terminal nitrogen atoms rather than side-on collisions with the central nitrogen atom of the azide govern the vibrational energy relaxation of this system. Finally, the importance of hydrogen bonding for the VER dynamics in this system is briefly discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3598108 | DOI Listing |
J Chem Theory Comput
January 2025
Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.
We introduce a computational methodology for evaluating and analyzing spin-vibration couplings in molecular systems, enabling insights into the interplay between electronic spins and molecular vibrations. By mapping ab initio electronic structure calculations onto molecular spin Hamiltonians, our approach captures those vibrational interactions potentially driving spin relaxation process. Spin-vibration couplings, derived from Holstein and Peierls terms, highlight the pivotal role of vibrational mode symmetry in spin decoherence and efficient energy dissipation.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India.
The effect of confinement on the tetrahedral ordering of liquid water plays a vital role in controlling their microscopic structure and dynamics as well as their spectroscopic properties. In this article, we have performed the classical molecular dynamics simulations of four different CTAB/water/chloroform reverse micelles with varied water content to study how the tetrahedral ordering of nanoscale water inside reverse micellar confinement influences the microscopic dynamics and the structural relaxation of water···water hydrogen bonds and its impact on the low-frequency intermolecular vibrational bands. We have noticed from the results obtained from simulated trajectories the lowering trends of tetrahedral ordering of water pools in reverse micellar confinements as we move from bulk to confined and strictly confined environments.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan.
We studied the vibrational coherences during the ultrafast internal conversions (ICs) of pyrimidine nucleobases and -sides in aqueous solutions and the gas phase with an instrumental resolution of 14 fs. The coherence of the same ring-breathing vibrational mode with a frequency of 750 cm was observed. In the gas phase, the vibrational coherence was transferred during IC from the ππ* to the nπ* state, and it survived for approximately 1 ps.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, J. D. Block, Sec.III, Salt Lake, Kolkata, West Bengal 700 098, India.
We investigated the temperature dependence of the intermolecular dynamics, including intermolecular vibrations and collective orientational relaxation, of one of the most typical deep eutectic solvents, reline, using femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES), subpicosecond optical Kerr effect spectroscopy (ps-OKES), and molecular dynamics (MD) simulations. According to fs-RIKES results, the temperature-dependent intermolecular vibrational band peak at ∼90 cm exhibited a redshift with increasing temperature. The density-of-state (DOS) spectrum of reline by MD simulations reproduced this fs-RIKES spectral feature.
View Article and Find Full Text PDFBiomaterials
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!