Electrochemical and mechanical behavior of laser processed Ti-6Al-4V surface in Ringer's physiological solution.

J Mater Sci Mater Med

Council of Scientific & Industrial Research-National Metallurgical Laboratory (CSIR-NML), Jamshedpur, 831007, India.

Published: August 2011

Laser surface modification of Ti-6Al-4V with an existing calcium phosphate coating has been conducted to enhance the surface properties. The electrochemical and mechanical behaviors of calcium phosphate deposited on a Ti-6Al-4V surface and remelted using a Nd:YAG laser at varying laser power densities (25-50 W/mm(2)) have been studied and the results are presented. The electrochemical properties of the modified surfaces in Ringer's physiological solution were evaluated by employing both potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The potentiodynamic polarizations showed an increase in the passive current density of Ti-6Al-4V after laser modification at power densities up to 35 W/mm(2), after which it exhibited a decrease. A reduction in the passive current density (by more than an order) was observed with an increase in the laser power density from 25 to 50 W/mm(2). EIS studies at the open circuit potential (OCP) and in the passive region at 1.19 V showed that the polarization resistance increased from 8.274 × 10(3) to 4.38 × 10(5) Ω cm(2) with increasing laser power densities. However, the magnitudes remain lower than that of the untreated Ti-6Al-4V at OCP. The average hardness and modulus of the laser treated Ti-6Al-4V, evaluated by the nanoindentation method, were determined to be 5.4-6.5 GPa (with scatter <±0.976 GPa) and 124-155 GPa (with scatter <±13 GPa) respectively. The corresponding hardness and modulus of untreated Ti-6Al-4V were ~4.1 (±0.62) and ~148 (±7) GPa respectively. Laser processing at power densities >35 W/mm(2) enhanced the surface properties (as passive current density is reduced) so that the materials may be suitable for the biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-011-4362-zDOI Listing

Publication Analysis

Top Keywords

laser power
12
power densities
12
electrochemical mechanical
8
laser
8
ti-6al-4v surface
8
ringer's physiological
8
physiological solution
8
calcium phosphate
8
passive current
8
current density
8

Similar Publications

Carbon-based nanomaterials with excellent electrical and optical properties are highly sought after for a plethora of hybrid applications, ranging from advanced sustainable energy storage devices to opto-electronic components. In this contribution, we examine in detail the dependence of electrical conductivity and the ultrafast optical nonlinearity of graphene oxide (GO) films on their degrees of reduction, as well as the link between the two properties. The GO films were first synthesized through the vacuum filtration method and then reduced partially and controllably by way of femtosecond laser direct writing with varying power doses.

View Article and Find Full Text PDF

Selective laser sintering (SLS) is one of the prominent methods of polymer additive manufacturing (AM). A low-power laser source is used to directly melt and sinter polymer material into the desired shape. This study focuses on the utilization of the low-power laser SLS system to successfully manufacture metallic components through the development of a metal-polymer composite material.

View Article and Find Full Text PDF

Deep eutectic solvents (DES) have emerged as versatile, sustainable media for the synthesis of nanomaterials due to their low toxicity, tunability, and biocompatibility. This study develops a one-step method to modify commercially available screen-printed electrodes (SPE) using laser-induced pyrolysis of DES, consisting of choline chloride and tartaric acid with dissolved nickel acetate and dispersed graphene. The electrodes were patterned using a 532 nm continuous-wave laser for the in situ formation of Ni nanoparticles decorated on graphene sheets directly on the SPE surface (Ni-G/SPE).

View Article and Find Full Text PDF

Few-Layered Black Phosphorene as Hole Transport Layer for Novel All-Inorganic Perovskite Solar Cells.

Materials (Basel)

January 2025

Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.

The CsPbBr perovskite exhibits strong environmental stability under light, humidity, temperature, and oxygen conditions. However, in all-inorganic perovskite solar cells (PSCs), interface defects between the carbon electrode and CsPbBr limit the carrier separation and transfer rates. We used black phosphorus (BP) nanosheets as the hole transport layer (HTL) to construct an all-inorganic carbon-based CsPbBr perovskite (FTO/c-TiO/m-TiO/CsPbBr/BP/C) solar cell.

View Article and Find Full Text PDF

Recently, ultrafast laser direct writing has become an effective method for preparing flexible films with micro-nano structures. However, effective control of laser parameters to obtain acceptable micro-nano structures and the effect of micro-nano structure sizes on function of the film remain challenges. Additionally, flexible films with high X-band transmittance are urgently required in aerospace and other fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!