Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The synthesis of halogenated nucleosides and nucleobases is of interest due to their chemical and pharmacological applications. Herein, the enzymatic halogenation of nucleobases and analogues catalysed by microorganisms and by chloroperoxidase from Caldariomyces fumago has been studied. This latter enzyme catalysed the chlorination and bromination of indoline and uracil. Pseudomonas, Citrobacter, Aeromonas, Streptomyces, Xanthomonas, and Bacillus genera catalysed the chlorination and/or bromination of indole and indoline. Different products were obtained depending on the substrate, the biocatalyst and the halide used. In particular, 85% conversion from indole to 5-bromoindole was achieved using Streptomyces cetonii.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10529-011-0655-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!