Cell biology of molybdenum in plants.

Plant Cell Rep

Department of Plant Biology, Braunschweig University of Technology, 38106, Braunschweig, Germany.

Published: October 2011

The transition element molybdenum (Mo) is of essential importance for (nearly) all biological systems as it is required by enzymes catalyzing important reactions within the cell. The metal itself is biologically inactive unless it is complexed by a special cofactor. With the exception of bacterial nitrogenase, where Mo is a constituent of the FeMo-cofactor, Mo is bound to a pterin, thus forming the molybdenum cofactor (Moco) which is the active compound at the catalytic site of all other Mo-enzymes. In plants, the most prominent Mo-enzymes are nitrate reductase, sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase, and the mitochondrial amidoxime reductase. The biosynthesis of Moco involves the complex interaction of six proteins and is a process of four steps, which also includes iron as well as copper in an indispensable way. After its synthesis, Moco is distributed to the apoproteins of Mo-enzymes by Moco-carrier/binding proteins that also participate in Moco-insertion into the cognate apoproteins. Xanthine dehydrogenase and aldehyde oxidase, but not the other Mo-enzymes, require a final step of posttranslational activation of their catalytic Mo-center for becoming active.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-011-1100-4DOI Listing

Publication Analysis

Top Keywords

xanthine dehydrogenase
8
dehydrogenase aldehyde
8
aldehyde oxidase
8
cell biology
4
biology molybdenum
4
molybdenum plants
4
plants transition
4
transition element
4
element molybdenum
4
molybdenum essential
4

Similar Publications

Functional impairment in COPD can be predicted using genomic-derived data.

Thorax

January 2025

Genome Medicine Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal

Objective: Reduced functional capacity and muscle weakness are two major contributors to functional impairment in chronic obstructive pulmonary disease (COPD). The underlying causes of functional impairment are poorly understood and, therefore, we sought to investigate the contribution of genetic factors.

Methods: We conducted a cross-sectional analysis of sociodemographic, clinical and genetic information of people with COPD.

View Article and Find Full Text PDF

HS inhibition of xanthine dehydrogenase to xanthine oxidase conversion reduces uric acid levels and improves myoblast functions.

Biochim Biophys Acta Mol Cell Res

January 2025

School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada. Electronic address:

Hydrogen sulfide (HS) is an important gasotransmitter that regulates a wide range of pathophysiological processes. Higher uric acid levels are associated with an increased risk of metabolic diseases. The causal mechanism linking HS signalling and uric acid metabolism in skeletal muscles has not yet been elucidated.

View Article and Find Full Text PDF

Fatty acid oxidation-induced HIF-1α activation facilitates hepatic urate synthesis through upregulating NT5C2 and XDH.

Life Metab

October 2024

CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China.

Dyslipidemia affects approximately half of all people with gout, and prior Mendelian randomization analysis suggested a causal role for elevated triglycerides in hyperuricemia (HU), but the underlying mechanisms remain elusive. We hypothesize that dyslipidemia promotes hepatic urate biosynthesis in HU and gout and fatty acid (FA) oxidation (FAO) drives this process. Here we developed a targeted metabolomics to quantify major metabolites in purine metabolic pathway in the sera of a human cohort with HU, gout, and normaluricemic controls.

View Article and Find Full Text PDF

Pseudogenization of the Slc23a4 gene is necessary for the survival of Xdh-deficient mice.

Sci Rep

January 2025

Laboratory of Human Physiology and Pathology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan.

In most patients with type 1 xanthinuria caused by mutations in the xanthine dehydrogenase gene (XDH), no clinical complications, except for urinary stones, are observed. In contrast, all Xdh(- / -) mice die due to renal failure before reaching adulthood at 8 weeks of age. Hypoxanthine or xanthine levels become excessive and thus toxic in Xdh(- / -) mice because enhancing the activity of hypoxanthine phosphoribosyl transferase (HPRT), which is an enzyme that uses hypoxanthine as a substrate, slightly increases the life span of these mice.

View Article and Find Full Text PDF

Background: The objective was to characterize the colostrum proteome of primiparous Holstein cows in association with immunoglobulin G (IgG) content. Immediately after calving, colostrum samples were collected from 18 cows to measure IgG concentration. Based on colostrum IgG content, samples were classified through cluster analysis and were identified as poor, average, and excellent quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!