AI Article Synopsis

  • The study examined how different starch sources affect Bacillus bacteria and gene expression related to intestinal development in weanling piglets.
  • The piglets were divided into four groups and fed diets containing corn, wheat, tapioca, and pea starch, each with varying amylose to amylopectin ratios.
  • Results revealed that pea starch led to the highest levels of Bacillus and increased mRNA levels of important growth factors (GLP-2 and IGF-1) in the intestines, indicating that starch type can influence gut health and development in piglets.

Article Abstract

The study was conducted to evaluate the effects of different starch sources on Bacillus spp. in intestinal tract and expression of intestinal development related genes of weanling piglets. Twenty-eight PIC male piglets were divided into four homogeneous groups according to initial body weight (similar birth and parity, weaned at 21 ± 1.5 days). Diets for the four treatments consisted of corn starch, wheat starch, tapioca starch and pea starch with the determined ratio for amylose to amylopectin of 0.21, 0.24, 0.12 and 0.52 respectively. Real-time quantitative polymerase chain reaction was applied to: (1) detect genomic DNA of Bacillus and to quantify the number of Bacillus in the intestinal tract chyme of piglets with the primers and probe which designed based on the 16S rRNA sequences of maximum species of Bacillus on GenBank; (2) measure the mRNA level of glucagon-like peptide 2 (GLP-2), insulin-like growth factors 1 (IGF-1) and epidermal growth factor (EGF) in duodenum, jejunum and ileum. Results showed that the number of Baciilus and the percentage based on all bacteria in the whole intestinal content of piglets fed pea starch was highest in all groups (P < 0.05). There was no significant differance on copy numbers for all bacteria and Bacillus in the whole intestinal tract of piglets between the corn starch group and wheat starch group (P > 0.05). In addition, the expression level of GLP-2, IGF-1 mRNA in jejunum and ileum of pea starch treatment (the high amylose/amylopectin ratio) were increased while the tapioca starch decreased their mRNA level significantly compared to other three treatments (P < 0.05). There was no significant difference for the mRNA level of EGF in each group. The present study revealed that high amylose/amylopectin ratio of starches significantly enhanced the numbers of Bacillus in all segments of intestine and the mRNA level of intestinal development related genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249556PMC
http://dx.doi.org/10.1007/s11033-011-0932-xDOI Listing

Publication Analysis

Top Keywords

intestinal tract
16
mrna level
16
intestinal development
12
development genes
12
pea starch
12
starch
10
effects starch
8
starch sources
8
sources bacillus
8
bacillus spp
8

Similar Publications

Backgrounds: Abuse of feed supplement can cause oxidative stress and inflammatory responses in Gallus gallus. Synbiotics are composed of prebiotics and probiotics and it possess huge application potentials in the treatment of animal diseases.

Methods: This study examined the effect of d-tagatose on the probiotic properties of L.

View Article and Find Full Text PDF

Chlorella vulgaris has antioxidant, antimicrobial, and anti-inflammatory properties, as well as the probiotic that is important for keeping the intestinal microbiota balanced. The objective was to test the impact of supplementation with microalgae and/or probiotics on broiler chickens' performance, immunity, and intestinal microbiota. The experimental design was in randomized blocks in a 4x2 factorial scheme, with four levels of inclusion of C.

View Article and Find Full Text PDF

() infection is a typical microbial agent that interferes with the complex mechanisms of gastric homeostasis by disrupting the balance between the host gastric microbiota and mucosa-related factors, ultimately leading to inflammatory changes, dysbiosis, and gastric cancer (GC). We searched this field on the basis of PubMed, Google Scholar, Web of Science, and Scopus databases. Most studies show that inhibits the colonization of other bacteria, resulting in a less variety of bacteria in the gastrointestinal (GI) tract.

View Article and Find Full Text PDF

Treatment methods in traditional Chinese medicine (TCM) are foundational to their theoretical, methodological, formulaic, and pharmacological systems, significantly contributing to syndrome differentiation and therapy. The principle of "promoting urination to regulate bowel movements" is a common therapeutic approach in TCM. The core concept is "promoting the dispersion and drainage of water dampness, regulating urination to relieve diarrhea," yet its scientific underpinning remains unclear.

View Article and Find Full Text PDF

The gut bacteria not only play a crucial role in maintaining human health but also exhibit close associations with the occurrence of numerous diseases. Understanding the physiological and pathological functions of gut bacteria and enabling early diagnosis of gut diseases heavily relies on accurate knowledge about their in vivo distribution. Consequently, there is a significant demand for noninvasive imaging techniques capable of providing real-time localization information regarding gut bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!