Facile Routes to Manganese(II) Triflate Complexes.

Inorg Chem Commun

Department of Chemistry, University of Wyoming, 1000 E. University Avenue, Laramie, Wyoming 82071, USA.

Published: May 2011

Manganese(II) chloride reacts with trimethylsilyl triflate (TMS(OTf) where OTf = (-)OSO(2)CF(3)) in a 1:1 mixture of acetonitrile and tetrahydrofuran, and after recrystallization affords the linear coordination polymer [Mn(II)(CH(3)CN)(2)(OTf)(2)](n). Each distorted octahedral manganese(II) center in the polymeric chain has trans-acetonitriles and the remaining equatorial coordination positions are occupied by the bridging triflate anions. Dissolving [Mn(II)(CH(3)CN)(2)(OTf)(2)](n) in equal volumes of acetonitrile and pyridine followed by recrystallization with diethyl ether yields trans-[Mn(II)(C(5)H(5)N)(4)(OTf)(2)]. The distorted octahedral geometry of the manganese center features monodentate trans-triflate anions and four equatorial pyridines. Exposure of either [Mn(II)(CH(3)CN)(2)(OTf)(2)](n) or [Mn(II)(C(5)H(5)N)(4)(OTf)(2)] to water readily gives [Mn(II)(H(2)O)(6)](OTf)(2). XRD reveals hydrogen-bonding interactions between the [Mn(II)(H(2)O)(6)](2+) cation and the triflate anion. All three of these species are easily crystallized and provide convenient sources of manganese(II) for further synthetic elaboration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108847PMC
http://dx.doi.org/10.1016/j.inoche.2011.02.022DOI Listing

Publication Analysis

Top Keywords

distorted octahedral
8
facile routes
4
manganeseii
4
routes manganeseii
4
triflate
4
manganeseii triflate
4
triflate complexes
4
complexes manganeseii
4
manganeseii chloride
4
chloride reacts
4

Similar Publications

The structural and electronic changes are investigated in a 3D hybrid perovskite, methylhydrazinium lead chloride (MHyPbCl) from a host/guest perspective as it transitions from a highly polar to less polar phase upon cooling, using first-principles calculations. The two phases vary structurally in the guest (MHy) orientation and the two differently distorted host (lead halide) layers. These findings highlight the critical role of guest reorientation in reducing host distortion at high temperatures, making the former the primary order parameter for the transition, a notable contrast to the case of other hybrid perovskites.

View Article and Find Full Text PDF

Is There an Optimal Spacer Cation for Two-Dimensional Lead Iodide Perovskites?

ACS Mater Au

January 2025

Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Two-dimensional lead iodide perovskites have attracted significant attention for their potential applications in optoelectronic and photonic devices due to their tunable excitonic properties. The choice of organic spacer cations significantly influences the light emission and exciton transport properties of these materials, which are vital for their device performance. In this Perspective, we discuss the impact of spacer cations on lattice dynamics and exciton-phonon coupling, focusing on three representative 2D lead iodide perovskites that exhibit distinct types of structural distortions.

View Article and Find Full Text PDF

The asymmetric Schiff base prepared from ethylenediamine and pyridine-2-carboxaldehyde reacts with Fe(ClO)·6HO to form the Fe(II) complex [FeL](ClO) with L = ,-diethyl-'-(pyridin-2-yl)methylene)ethane-1,2-diamine, where the Fe(III) starting material has been unexpectedly reduced to Fe(II). This complex was characterized by elemental analysis, infrared spectra, single crystal and powder X-ray diffraction measurements, variable temperature DC magnetic measurement and room temperature Mössbauer spectroscopy. The asymmetric ligand L coordinates in a tridentate fashion through its pyridyl, azomethine and amino nitrogen atoms, generating a distorted octahedral geometry around the central metal ion.

View Article and Find Full Text PDF

The title compound, {(CHNO)[SnBr]} , is a layered hybrid perovskite crystallizing in the monoclinic space group 2/. The asymmetric unit consists of one HC-O-NH -CH cation (MeHA), one Sn atom located on a twofold rotation axis, and two Br atoms. The Sn atom has a distorted octa-hedral coordination environment formed by the bromido ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!